Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens P. Dreier is active.

Publication


Featured researches published by Jens P. Dreier.


Nature Medicine | 2011

The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease

Jens P. Dreier

The term spreading depolarization describes a wave in the gray matter of the central nervous system characterized by swelling of neurons, distortion of dendritic spines, a large change of the slow electrical potential and silencing of brain electrical activity (spreading depression). In the clinic, unequivocal electrophysiological evidence now exists that spreading depolarizations occur abundantly in individuals with aneurismal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage or traumatic brain injury. Spreading depolarization is induced experimentally by various noxious conditions including chemicals such as potassium, glutamate, inhibitors of the sodium pump, status epilepticus, hypoxia, hypoglycemia and ischemia, but it can can also invade healthy, naive tissue. Resistance vessels respond to it with tone alterations, causing either transient hyperperfusion (physiological hemodynamic response) in healthy tissue or severe hypoperfusion (inverse hemodynamic response, or spreading ischemia) in tissue at risk for progressive damage, which contributes to lesion progression. Therapies that target spreading depolarization or the inverse hemodynamic response may potentially treat these neurological conditions.


Stroke | 2010

Definition of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies Proposal of a Multidisciplinary Research Group

Mervyn D.I. Vergouwen; Marinus Vermeulen; Jan van Gijn; Gabriel J.E. Rinkel; Eelco F. M. Wijdicks; J. Paul Muizelaar; A. David Mendelow; Seppo Juvela; Howard Yonas; Karel G. terBrugge; R. Loch Macdonald; Michael N. Diringer; Joseph P. Broderick; Jens P. Dreier; Yvo B.W.E.M. Roos

Background and Purpose— In clinical trials and observational studies there is considerable inconsistency in the use of definitions to describe delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage. A major cause for this inconsistency is the combining of radiographic evidence of vasospasm with clinical features of cerebral ischemia, although multiple factors may contribute to DCI. The second issue is the variability and overlap of terms used to describe each phenomenon. This makes comparisons among studies difficult. Methods— An international ad hoc panel of experts involved in subarachnoid hemorrhage research developed and proposed a definition of DCI to be used as an outcome measure in clinical trials and observational studies. We used a consensus-building approach. Results— It is proposed that in observational studies and clinical trials aiming to investigate strategies to prevent DCI, the 2 main outcome measures should be: (1) cerebral infarction identified on CT or MRI or proven at autopsy, after exclusion of procedure-related infarctions; and (2) functional outcome. Secondary outcome measure should be clinical deterioration caused by DCI, after exclusion of other potential causes of clinical deterioration. Vasospasm on angiography or transcranial Doppler can also be used as an outcome measure to investigate proof of concept but should be interpreted in conjunction with DCI or functional outcome. Conclusion— The proposed measures reflect the most relevant morphological and clinical features of DCI without regard to pathogenesis to be used as an outcome measure in clinical trials and observational studies.


Journal of Cerebral Blood Flow and Metabolism | 2011

Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

Martin Lauritzen; Jens P. Dreier; Martin Fabricius; Jed A. Hartings; Rudolf Graf; Anthony J. Strong

Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.


Brain | 2009

Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage

Jens P. Dreier; Sebastian Major; Andrew Manning; Johannes Woitzik; Chistoph Drenckhahn; Jens Steinbrink; Christos M. Tolias; Ana I Oliveira-Ferreira; Martin Fabricius; Jed A. Hartings; Peter Vajkoczy; Martin Lauritzen; Ulrich Dirnagl; Georg Bohner; Anthony J. Strong

The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO2). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brains resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel ‘functional marker’ for progressive ischaemia.


The Journal of Neuroscience | 2004

Lasting Blood-Brain Barrier Disruption Induces Epileptic Focus in the Rat Somatosensory Cortex

Ernst Seiffert; Jens P. Dreier; Sebastian Ivens; Ingo Bechmann; Oren Tomkins; Uwe Heinemann; Alon Friedman

Perturbations in the integrity of the blood-brain barrier have been reported in both humans and animals under numerous pathological conditions. Although the blood-brain barrier prevents the penetration of many blood constituents into the brain extracellular space, the effect of such perturbations on the brain function and their roles in the pathogenesis of cortical diseases are unknown. In this study we established a model for focal disruption of the blood-brain barrier in the rat cortex by direct application of bile salts. Exposure of the cerebral cortex in vivo to bile salts resulted in long-lasting extravasation of serum albumin to the brain extracellular space and was associated with a prominent activation of astrocytes with no inflammatory response or marked cell loss. Using electrophysiological recordings in brain slices we found that a focus of epileptiform discharges developed within 4-7 d after treatment and could be recorded up to 49 d postoperatively in >60% of slices from treated animals but only rarely (10%) in sham-operated controls. Epileptiform activity involved both glutamatergic and GABAergic neurotransmission. Epileptiform activity was also induced by direct cortical application of native serum, denatured serum, or albumin-containing solution. In contrast, perfusion with serum-adapted electrolyte solution did not induce abnormal activity, thereby suggesting that the exposure of the serum-devoid brain environment to serum proteins underlies epileptogenesis in the blood-brain barrier-disrupted cortex. Although many neuropathologies entail a compromised blood-brain barrier, this is the first direct evidence that it may have a role in the pathogenesis of focal cortical epilepsy, a common neurological disease.


Annals of Neurology | 2008

Spreading depolarizations occur in human ischemic stroke with high incidence

Christian Dohmen; Oliver W. Sakowitz; Martin Fabricius; Bert Bosche; Thomas Reithmeier; Ralf-Ingo Ernestus; Gerrit Brinker; Jens P. Dreier; Johannes Woitzik; Anthony J. Strong; Rudolf Graf

Cortical spreading depression (CSD) and periinfarct depolarization (PID) have been shown in various experimental models of stroke to cause secondary neuronal damage and infarct expansion. For decades it has been questioned whether CSD or PID occur in human ischemic stroke. Here, we describe CSD and PID in patients with malignant middle cerebral artery infarction detected by subdural electrocorticography (ECoG).


Neurological Research | 2009

Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought

Ryszard M. Pluta; Jacob Hansen-Schwartz; Jens P. Dreier; Peter Vajkoczy; R. Loch Macdonald; Shigeru Nishizawa; Hideotoshi Kasuya; George Wellman; Emanuela Keller; Alois Zauner; Nicholas Dorsch; Joseph Clark; Shigeki Ono; Talat Kırış; Peter LeRoux; John H. Zhang

Abstract Objective: Delayed cerebral vasospasm has long been recognized as an important cause of poor outcome after an otherwise successful treatment of a ruptured intracranial aneurysm, but it remains a pathophysiological enigma despite intensive research for more than half a century. Method: Summarized in this review are highlights of research from North America, Europe and Asia reflecting recent advances in the understanding of delayed ischemic deficit. Result: It will focus on current accepted mechanisms and on new frontiers in vasospasm research. Conclusion: A key issue is the recognition of events other than arterial narrowing such as early brain injury and cortical spreading depression and of their contribution to overall mortality and morbidity.


Journal of Cerebral Blood Flow and Metabolism | 1998

Increased Formation of Reactive Oxygen Species after Permanent and Reversible Middle Cerebral Artery Occlusion in the Rat

Oliver Peters; Tobias Back; Ute Lindauer; Christina Busch; Dirk Megow; Jens P. Dreier; Ulrich Dirnagl

In barbiturate-anesthetized rats, we induced 3 hours of permanent middle cerebral artery occlusion (MCAO) by an intraluminal thread (n = 6), or 1 hour MCAO followed by 2 hours of reperfusion (n = 6). Through a closed cranial window over the parietal cortex, the production of reactive oxygen species (ROS) was measured in the infarct border using online in vivo chemiluminescence (CL) while monitoring the appearance of peri-infarct depolarizations (PID). The borderzone localization of the ROS and direct current (DC) potential measurements was confirmed in additional experiments using laser-Doppler scanning, mapping regional CBF changes through the cranial window after permanent (n = 5) or reversible (n = 5) MCAO. CL measurements revealed a short period (10 to 30 minutes) of reduced ROS formation after vessel occlusion, followed by a significant increase (to 162 ± 51%; baseline = 100%; P < .05) from 100 minutes of permanent MCAO onward. Reperfusion after a 1-hour period of MCAO led to a burst-like pattern of ROS production (peak: 489 ± 330%; P < .05). When the experiments were terminated 3 hours after induction of MCAO, CL was still significantly increased above baseline after permanent and reversible MCAO (to 190 ± 67% and 211 ± 64%, respectively; P < .05). Simultaneous DC potential recordings detected 6.4 ± 2.7 PID in the first, 4.7 ± 2.3 in the second, and 2.8 ± 2.0 in the third hour after permanent MCAO. In animals with reversible MCAO, PID were abolished from 15-minutes recirculation onward. There was no temporal relationship between ROS production and peri-infarct DC potential shifts. In conclusion, using a high temporal resolution ROS detection technique (CL), we found that permanent MCAO (after an initial decrease) was accompanied by a steady increase of ROS production during the 3-hour observation period, while reperfusion after 1 hour of MCAO produced a burst in ROS formation. Both patterns of ROS production were not related to the occurrence of PID.


Experimental Brain Research | 1991

Regional and time dependent variations of low Mg2+ induced epileptiform activity in rat temporal cortex slices

Jens P. Dreier; Uwe Heinemann

SummaryIn order to study spatial interactions during low magnesium induced epileptiform activity, changes in extracellular potassium concentration ([K+]o) and associated slow field potentials (f.p.s) were recorded in thin rat temporal cortex slices (400 μm) containing the neocortical temporal area 3 (Te3), the entorhinal cortex (EC) and the hippocampal formation with the dentate gyrus, area CA3 and CA1 and the subiculum (Sub). The epileptiform activity was characterized by short recurrent epileptiform discharges (40 to 80 ms, 20/min) in areas CA3 and CA1 and by interictal discharges and tonic and clonic seizure like events (SLEs) (13–88s) in the EC, Te3 and Sub. While interictal discharges occurred independent of each other in the different subfields, the three areas became synchronized during the course of a SLE. The EC, Te3 and Sub all could represent the “focus” for generation of the SLEs. This initiation site for SLEs sometimes changed from one area to another. The characteristics of the rises in [K+]o and subsequent undershoots were comparable to previous observations in in vivo preparations. Interestingly, rises in [K+]o could start before actual onset of seizure like activity in secondarily recruited areas. The epileptiform activity could change its characteristics to either a state of recurrent tonic discharge episodes or to a continuous clonic discharge state reminiscent of various forms of status epilepticus. We did not observe, in any of these states, active participation by area CA3 in the epileptiform activity of the EC in spite of clear projected activity to the dentate gyrus. Even after application of picrotoxin (20 μM), area CA3 did not actively participate in the SLEs generated in the entorhinal cortex. When baclofen (2 μM) was added to the picrotoxin containing medium, SLEs occurred both in the entorhinal cortex and in area CA3, suggesting that inhibition of inhibitory interneurons by baclofen could overcome the “filtering” of projected activity from the entorhinal cortex to the hippocampus.


Lancet Neurology | 2011

Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study

Jed A. Hartings; M. Ross Bullock; David O. Okonkwo; Lilian S. Murray; Gordon Murray; Martin Fabricius; Andrew I.R. Maas; Johannes Woitzik; Oliver W. Sakowitz; Bruce E. Mathern; Bob Roozenbeek; Hester F. Lingsma; Jens P. Dreier; Ava M. Puccio; Lori Shutter; Clemens Pahl; Anthony J. Strong

BACKGROUND Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable neurological outcome. METHODS We did a prospective, observational, multicentre study at seven neurological centres. We enrolled 109 adults who needed neurosurgery for acute TBI. Spreading depolarisations were monitored by electrocorticography during intensive care and were classified as cortical spreading depression (CSD) if they took place in spontaneously active cortex or as isoelectric spreading depolarisation (ISD) if they took place in isoelectric cortex. Investigators who treated patients and assessed outcome were masked to electrocorticographic results. Scores on the extended Glasgow outcome scale at 6 months were fitted to a multivariate model by ordinal regression. Prognostic score (based on variables at admission, as validated by the IMPACT studies) and spreading depolarisation category (none, CSD only, or at least one ISD) were assessed as outcome predictors. FINDINGS Six individuals were excluded because of poor-quality electrocorticography. A total of 1328 spreading depolarisations arose in 58 (56%) patients. In 38 participants, all spreading depolarisations were classified as CSD; 20 patients had at least one ISD. By multivariate analysis, both prognostic score (p=0·0009) and spreading depolarisation category (p=0·0008) were significant predictors of neurological outcome. CSD and ISD were associated with an increased risk of unfavourable outcome (common odds ratios 1·56 [95% CI 0·72-3·37] and 7·58 [2·64-21·8], respectively). Addition of depolarisation category to the regression model increased the proportion of variance in outcome that could be attributed to predictors from 9% to 22%, compared with the prognostic score alone. INTERPRETATION Spreading depolarisations were associated with unfavourable outcome, after controlling for conventional prognostic variables. The possibility that spreading depolarisations have adverse effects on the traumatically injured brain, and therefore might be a target in the treatment of TBI, deserves further research. FUNDING US Army CDMRP PH/TBI research programme.

Collaboration


Dive into the Jens P. Dreier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Heinemann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabor C. Petzold

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Oliver W. Sakowitz

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge