Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Peter von Kries is active.

Publication


Featured researches published by Jens Peter von Kries.


Science | 2014

Identification of LRRC8 Heteromers as an Essential Component of the Volume-Regulated Anion Channel VRAC

Felizia K. Voss; Florian Ullrich; Jonas Münch; Katina Lazarow; Darius Lutter; Nancy Mah; Miguel A. Andrade-Navarro; Jens Peter von Kries; Tobias Stauber; Thomas J. Jentsch

One Swell Ion Channel When mammalian cells are faced with osmotic challenges, they need to swell or shrink. The molecular characterization of the volume-regulated anion channel (VRAC) remains unknown, although many candidate proteins have been proposed. Voss et al. (p. 634, published online 10 April; see the Perspective by Mindell) used a genome-wide screen to identify a group of leucine-rich repeat–containing (LRRC) proteins necessary for forming VRAC. Suppression of LRRC8A nearly eliminated the presence of VRAC in mammalian cells. A heterooligomer of LRRC proteins appears to form VRAC. Identification of VRAC components is an essential step forward in the understanding of swelling-activated ion channels and provides opportunities for understanding both the mechanism of the channel and its role in physiology. Components of an elusive swelling-activated anion channel are identified and form a structurally new class of channel. [Also see Perspective by Mindell] Regulation of cell volume is critical for many cellular and organismal functions, yet the molecular identity of a key player, the volume-regulated anion channel VRAC, has remained unknown. A genome-wide small interfering RNA screen in mammalian cells identified LRRC8A as a VRAC component. LRRC8A formed heteromers with other LRRC8 multispan membrane proteins. Genomic disruption of LRRC8A ablated VRAC currents. Cells with disruption of all five LRRC8 genes required LRRC8A cotransfection with other LRRC8 isoforms to reconstitute VRAC currents. The isoform combination determined VRAC inactivation kinetics. Taurine flux and regulatory volume decrease also depended on LRRC8 proteins. Our work shows that VRAC defines a class of anion channels, suggests that VRAC is identical to the volume-sensitive organic osmolyte/anion channel VSOAC, and explains the heterogeneity of native VRAC currents.


Cancer Research | 2012

A Novel Tankyrase Inhibitor Decreases Canonical Wnt Signaling in Colon Carcinoma Cells and Reduces Tumor Growth in Conditional APC Mutant Mice

Jo Waaler; Ondrej Machon; Lucie Tumova; Huyen Dinh; Vladimir Korinek; Steven Ray Wilson; Jan Erik Paulsen; Nina Marie Pedersen; Tor J. Eide; Olga Machonova; Dietmar Gradl; Andrey Voronkov; Jens Peter von Kries; Stefan Krauss

Increased nuclear accumulation of β-catenin, a mediator of canonical Wnt signaling, is found in numerous tumors and is frequently associated with tumor progression and metastasis. Inhibition of Wnt/β-catenin signaling therefore is an attractive strategy for anticancer drugs. In this study, we have identified a novel small molecule inhibitor of the β-catenin signaling pathway, JW55, that functions via inhibition of the PARP domain of tankyrase 1 and tankyrase 2 (TNKS1/2), regulators of the β-catenin destruction complex. Inhibition of TNKS1/2 poly(ADP-ribosyl)ation activity by JW55 led to stabilization of AXIN2, a member of the β-catenin destruction complex, followed by increased degradation of β-catenin. In a dose-dependent manner, JW55 inhibited canonical Wnt signaling in colon carcinoma cells that contained mutations in either the APC (adenomatous polyposis coli) locus or in an allele of β-catenin. In addition, JW55 reduced XWnt8-induced axis duplication in Xenopus embryos and tamoxifen-induced polyposis formation in conditional APC mutant mice. Together, our findings provide a novel chemotype for targeting canonical Wnt/β-catenin signaling through inhibiting the PARP domain of TNKS1/2.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking

Klaus Hellmuth; Stefanie Grosskopf; Ching Tung Lum; Martin Würtele; Nadine Röder; Jens Peter von Kries; Marta Rosário; Jörg Rademann; Walter Birchmeier

The protein tyrosine phosphatase Shp2 is a positive regulator of growth factor signaling. Gain-of-function mutations in several types of leukemia define Shp2 as a bona fide oncogene. We performed a high-throughput in silico screen for small-molecular-weight compounds that bind the catalytic site of Shp2. We have identified the phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell-permeable inhibitor, which is specific for Shp2 over the closely related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2-dependent cellular events such as hepatocyte growth factor/scatter factor (HGF/SF)-induced epithelial cell scattering and branching morphogenesis. PHPS1 also blocks Shp2-dependent downstream signaling, namely HGF/SF-induced sustained phosphorylation of the Erk1/2 MAP kinases and dephosphorylation of paxillin. Furthermore, PHPS1 efficiently inhibits activation of Erk1/2 by the leukemia-associated Shp2 mutant, Shp2-E76K, and blocks the anchorage-independent growth of a variety of human tumor cell lines. The PHPS compound class is therefore suitable for further development of therapeutics for the treatment of Shp2-dependent diseases.


Cancer Cell | 2012

Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL.

Daniel Nagel; Stefani Spranger; Michelle Vincendeau; Michael Grau; Silke Raffegerst; Bernhard Kloo; Daniela Hlahla; Martin Neuenschwander; Jens Peter von Kries; Kamyar Hadian; Bernd Dörken; Peter Lenz; Georg Lenz; Dolores J. Schendel; Daniel Krappmann

Proteolytic activity of the mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) paracaspase is required for survival of the activated B cell subtype of diffuse large B cell lymphoma (ABC-DLBCL). We have identified distinct derivatives of medicinal active phenothiazines, namely mepazine, thioridazine, and promazine, as small molecule inhibitors of the MALT1 protease. These phenothiazines selectively inhibit cleavage activity of recombinant and cellular MALT1 by a noncompetitive mechanism. Consequently, the compounds inhibit anti-apoptotic NF-κB signaling and elicit toxic effects selectively on MALT1-dependent ABC-DLBCL cells in vitro and in vivo. Our data provide a conceptual proof for a clinical application of distinct phenothiazines in the treatment of ABC-DLBCL.


Cancer Research | 2011

Novel Synthetic Antagonists of Canonical Wnt Signaling Inhibit Colorectal Cancer Cell Growth

Jo Waaler; Ondrej Machon; Jens Peter von Kries; Steven Ray Wilson; Elsa Lundenes; Doris Wedlich; Dietmar Gradl; Jan Erik Paulsen; Olga Machonova; Jennifer L. Dembinski; Huyen Dinh; Stefan Krauss

Canonical Wnt signaling is deregulated in several types of human cancer where it plays a central role in tumor cell growth and progression. Here we report the identification of 2 new small molecules that specifically inhibit canonical Wnt pathway at the level of the destruction complex. Specificity was verified in various cellular reporter systems, a Xenopus double-axis formation assay and a gene expression profile analysis. In human colorectal cancer (CRC) cells, the new compounds JW67 and JW74 rapidly reduced active β-catenin with a subsequent downregulation of Wnt target genes, including AXIN2, SP5, and NKD1. Notably, AXIN2 protein levels were strongly increased after compound exposure. Long-term treatment with JW74 inhibited the growth of tumor cells in both a mouse xenograft model of CRC and in Apc(Min) mice (multiple intestinal neoplasia, Min). Our findings rationalize further preclinical and clinical evaluation of these new compounds as novel modalities for cancer treatment.


Journal of Biological Chemistry | 2011

Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes

Frank Christian; Márta Szaszák; Sabine Friedl; Stephan Drewianka; Dorothea Lorenz; Andrey C. da Costa Goncalves; Jens Furkert; Carolyn Vargas; Peter Schmieder; Frank Götz; Kerstin Zühlke; Marie Moutty; Hendrikje Göttert; Mangesh Joshi; Bernd Reif; Hannelore Haase; Ingo Morano; Solveig Grossmann; Anna Klukovits; Judit Verli; Róbert Gáspár; Claudia Noack; Martin W. Bergmann; Robert S. Kass; Kornelia Hampel; Dmitry Kashin; Hans Gottfried Genieser; Friedrich W. Herberg; Debbie Willoughby; Dermot M. F. Cooper

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3′-diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Antimicrobial Agents and Chemotherapy | 2007

Small-Molecule Scaffolds for CYP51 Inhibitors Identified by High-Throughput Screening and Defined by X-Ray Crystallography

Larissa M. Podust; Jens Peter von Kries; Ali Nasser Eddine; Youngchang Kim; Liudmila V. Yermalitskaya; Ronald Kuehne; Hugues Ouellet; Thulasi Warrier; Markus Alteköster; Jong Seok Lee; Jörg Rademann; Hartmut Oschkinat; Stefan H. E. Kaufmann; Michael R. Waterman

ABSTRACT Sterol 14α-demethylase (CYP51), a major checkpoint in membrane sterol biosynthesis, is a key target for fungal antibiotic therapy. We sought small organic molecules for lead candidate CYP51 inhibitors. The changes in CYP51 spectral properties following ligand binding make CYP51 a convenient target for high-throughput screening technologies. These changes are characteristic of either substrate binding (type I) or inhibitor binding (type II) in the active site. We screened a library of 20,000 organic molecules against Mycobacterium tuberculosis CYP51 (CYP51Mt), examined the top type I and type II binding hits for their inhibitory effects on M. tuberculosis in broth culture, and analyzed them spectrally for their ability to discriminate between CYP51Mt and two reference M. tuberculosis CYP proteins, CYP130 and CYP125. We determined the binding mode for one of the top type II hits, α-ethyl-N-4-pyridinyl-benzeneacetamide (EPBA), by solving the X-ray structure of the CYP51Mt-EPBA complex to a resolution of 1.53 Å. EPBA binds coordinately to the heme iron in the CYP51Mt active site through a lone pair of nitrogen electrons and also through hydrogen bonds with residues H259 and Y76, which are invariable in the CYP51 family, and hydrophobic interactions in a phylum- and/or substrate-specific cavity of CYP51. We also identified a second compound with structural and binding properties similar to those of EPBA, 2-(benzo[d]-2,1,3-thiadiazole-4-sulfonyl)-2-amino-2-phenyl-N-(pyridinyl-4)-acetamide (BSPPA). The congruence between the geometries of EPBA and BSPPA and the CYP51 binding site singles out EPBA and BSPPA as lead candidate CYP51 inhibitors with optimization potential for efficient discrimination between host and pathogen enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation.

Christoph Mueller-Dieckmann; Stefan Kernstock; Michael Lisurek; Jens Peter von Kries; Friedrich Haag; Manfred S. Weiss; Friedrich Koch-Nolte

Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human proteins, causing diseases such as whooping cough, cholera, and diphtheria. Whereas the 3D structures of numerous ADP-ribosylating toxins and related mammalian enzymes have been elucidated, virtually nothing is known about the structure of protein de-ADP-ribosylating enzymes. Here, we report the 3Dstructure of human ADP-ribosylhydrolase 3 (hARH3). The molecular architecture of hARH3 constitutes the archetype of an all-α-helical protein fold and provides insights into the reversibility of protein ADP-ribosylation. Two magnesium ions flanked by highly conserved amino acids pinpoint the active-site crevice. Recombinant hARH3 binds free ADP-ribose with micromolar affinity and efficiently de-ADP-ribosylates poly- but not monoADP-ribosylated proteins. Docking experiments indicate a possible binding mode for ADP-ribose polymers and suggest a reaction mechanism. Our results underscore the importance of endogenous ADP-ribosylation cycles and provide a basis for structure-based design of ADP-ribosylhydrolase inhibitors.


Biochemical Journal | 2006

Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases.

Jeyanthy Eswaran; Jens Peter von Kries; Brian D. Marsden; Emma Longman; J.E. Debreczeni; E. Ugochukwu; Andrew Turnbull; Wen Hwa Lee; Stefan Knapp; Alastair J. Barr

Protein tyrosine phosphatases PTPN5, PTPRR and PTPN7 comprise a family of phosphatases that specifically inactivate MAPKs (mitogen-activated protein kinases). We have determined high-resolution structures of all of the human family members, screened them against a library of 24000 compounds and identified two classes of inhibitors, cyclopenta[c]quinolinecarboxylic acids and 2,5-dimethylpyrrolyl benzoic acids. Comparative structural analysis revealed significant differences within this conserved family that could be explored for the design of selective inhibitors. PTPN5 crystallized, in two distinct crystal forms, with a sulphate ion in close proximity to the active site and the WPD (Trp-Pro-Asp) loop in a unique conformation, not seen in other PTPs, ending in a 3(10)-helix. In the PTPN7 structure, the WPD loop was in the closed conformation and part of the KIM (kinase-interaction motif) was visible, which forms an N-terminal aliphatic helix with the phosphorylation site Thr66 in an accessible position. The WPD loop of PTPRR was open; however, in contrast with the structure of its mouse homologue, PTPSL, a salt bridge between the conserved lysine and aspartate residues, which has been postulated to confer a more rigid loop structure, thereby modulating activity in PTPSL, does not form in PTPRR. One of the identified inhibitor scaffolds, cyclopenta[c]quinoline, was docked successfully into PTPRR, suggesting several possibilities for hit expansion. The determined structures together with the established SAR (structure-activity relationship) propose new avenues for the development of selective inhibitors that may have therapeutic potential for treating neurodegenerative diseases in the case of PTPRR or acute myeloblastic leukaemia targeting PTPN7.


ChemBioChem | 2005

Discovery of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase A (MptpA) Inhibitors Based on Natural Products and a Fragment-Based Approach

Michael Manger; Michael Scheck; Jens Peter von Kries; Thomas Langer; Krishna Saxena; Harald Schwalbe; Alois Fürstner; Jörg Rademann; Herbert Waldmann

Protein phosphorylation and dephosphorylation reactions are at the heart of innumerable biological processes. Aberrant protein phosphorylation contributes to the development of many human diseases including cancer and diabetes. Due to this biological importance, protein kinases, which catalyse protein phosphorylation, and their antagonists, protein phosphatases (PPs), have moved into the focus of a rapidly growing number of medicinal-chemistry and chemicalbiology research programs. Several bacterial pathogens produce eukaryotic-like protein phosphatases that have been implicated in virulence. A particularly important case is Myobacterium tuberculosis, which is the causative agent of tuberculosis (TB) and a major cause of mortality around the world. M. tuberculosis has two functional phosphatases, MptpA and MptpB. These enzymes are secreted by growing mycobacterial cells. They are believed to mediate mycobacterial survival in host cells by dephosphorylating proteins that are involved in interferon-g signaling pathways. About one third of the world’s population is infected with M. tuberculosis, and there is an increasing spread of drug-resistant mycobacteria. Therefore, there is a growing need for the development of new therapeutic agents for the treatment of tuberculosis. In the light of this urgent demand, the Mptps have been proposed as new potential anti-TB drug targets. However, to date, inhibitors of these enzymes have not been described. Here we describe the discovery of MptpA inhibitors by two different and complementary approaches for the identification of initial hits in screening collections, namely natural-productinspired and fragment-based library development. We have previously forwarded the notion that biologically active natural products should be regarded as evolutionarily selected and biologically prevalidated starting points for inhibitor development. Based on this principle and the fact that MptpA is a tyrosine phosphatase, we have investigated whether natural products and their analogues that have already served as guiding structures for the discovery of new classes of phosphatase inhibitors could be employed for the identification of the first Mptp inhibitors. Initially the stevastelins (Scheme 1) were considered as possible starting points for the development of MptpA inhibitors.

Collaboration


Dive into the Jens Peter von Kries's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Rademann

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Zühlke

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Stefan Knapp

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge