Jens Praestgaard
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Praestgaard.
Science Translational Medicine | 2014
Joan Mannick; Giuseppe Del Giudice; Maria Lattanzi; Nicholas M. Valiante; Jens Praestgaard; Baisong Huang; Michael A. Lonetto; Holden T. Maecker; John S. Kovarik; Simon Carson; David J. Glass; Lloyd B. Klickstein
mTOR inhibition by RAD001 improves immune responses in elderly volunteers receiving an influenza vaccination. mTOR and Human Aging Inhibition of mTOR signaling extends life span and delays the onset of aging-related diseases in all species studied to date. These findings suggest that the mTOR pathway regulates aging. However, it is unknown if mTOR inhibition has beneficial effects on aging in humans. To begin to address this question, Mannick et al. evaluated the effects of the mTOR inhibitor RAD001 on the decline in immune function that occurs during aging in humans. Their findings suggest that RAD001 improved immune function in elderly volunteers as assessed by response to influenza vaccination. It remains to be determined whether mTOR inhibition improves additional aging-related conditions in humans. Inhibition of the mammalian target of rapamycin (mTOR) pathway extends life span in all species studied to date, and in mice delays the onset of age-related diseases and comorbidities. However, it is unknown if mTOR inhibition affects aging or its consequences in humans. To begin to assess the effects of mTOR inhibition on human aging-related conditions, we evaluated whether the mTOR inhibitor RAD001 ameliorated immunosenescence (the decline in immune function during aging) in elderly volunteers, as assessed by their response to influenza vaccination. RAD001 enhanced the response to the influenza vaccine by about 20% at doses that were relatively well tolerated. RAD001 also reduced the percentage of CD4 and CD8 T lymphocytes expressing the programmed death-1 (PD-1) receptor, which inhibits T cell signaling and is more highly expressed with age. These results raise the possibility that mTOR inhibition may have beneficial effects on immunosenescence in the elderly.
Neurology | 2014
Anthony A. Amato; Kumaraswamy Sivakumar; Namita Goyal; William S. David; Mohammad Salajegheh; Jens Praestgaard; Estelle Lach-Trifilieff; Anne-Ulrike Trendelenburg; Didier Laurent; David J. Glass; Ronenn Roubenoff; Brian Tseng; Steven A. Greenberg
Objective: To study activin signaling and its blockade in sporadic inclusion body myositis (sIBM) through translational studies and a randomized controlled trial. Methods: We measured transforming growth factor β signaling by SMAD2/3 phosphorylation in muscle biopsies of 50 patients with neuromuscular disease (17 with sIBM). We tested inhibition of activin receptors IIA and IIB (ActRII) in 14 patients with sIBM using one dose of bimagrumab (n = 11) or placebo (n = 3). The primary outcome was the change in right thigh muscle volume by MRI at 8 weeks. Lean body mass, strength, and function were secondary outcomes. Twelve of the patients (10 bimagrumab, 2 placebo) participated in a subsequent 16-week observation phase. Results: Muscle SMAD2/3 phosphorylation was higher in sIBM than in other muscle diseases studied (p = 0.003). Eight weeks after dosing, the bimagrumab-treated patients increased thigh muscle volume (right leg +6.5% compared with placebo, p = 0.024; left leg +7.6%, p = 0.009) and lean body mass (+5.7% compared with placebo, p = 0.014). Subsequently, bimagrumab-treated patients had improved 6-minute walking distance, which peaked at 16 weeks (+14.6%, p = 0.008) compared with placebo. There were no serious adverse events; the main adverse events with bimagrumab were mild acne and transient involuntary muscle contractions. Conclusions: Transforming growth factor β superfamily signaling, at least through ActRII, is implicated in the pathophysiology of sIBM. Inhibition of ActRII increased muscle mass and function in this pilot trial, offering a potential novel treatment of sIBM. Classification of evidence: This study provides Class I evidence that for patients with inclusion body myositis, bimagrumab increases thigh muscle volume at 8 weeks.
Antiviral Research | 2011
Eric Lawitz; Eliot Godofsky; Regine Rouzier; Thomas Marbury; Tuan Nguyen; June Ke; MeiMei Huang; Jens Praestgaard; Denise Serra; Thomas G. Evans
BACKGROUND Cyclophilin inhibitors have shown activity against a variety of viruses, including HCV. NIM811, a novel, non-immunosuppressive cyclophilin inhibitor was studied in ascending doses in a randomized, double-blind, placebo-controlled 14-day trial in genotype 1 HCV patients. Doses of 10 up to 600 mg were given orally once or twice daily as monotherapy (9:3 randomization of NIM811:placebo). 600 mg or placebo bid for 14 days was then co-administered with pegylated interferon alpha (PEG-IFN-α) administered on days 1 and 8 to genotype 1 relapsers. RESULTS NIM811 was well tolerated at all doses. Although lack of antiviral effect was noted in the monotherapy arms, liver transaminase normalization occurred at doses over 75 mg. Mild, clinically non-significant elevations of bilirubin, and significant declines in platelet numbers were observed in the 400 and 600 mg bid groups. In the combination group, the mean HCV RNA decline was 2.85 log, compared to a 0.56 log in the PEG-IFN alone arm. The mean ALT (alanine transaminase) declined significantly by day 14 in the combination, but was unchanged in the PEG-IFN alone group. In the combination therapy group, the mean platelets were 203×10(9)/L at baseline and fell to 105×10(9)/L by day 14; for patients treated with PEG-IFN the values were 177×10(9)/L and 139×10(9)/L. There was a significant increase in bilirubin, although this did not reach clinically concerning levels. There were no severe or serious adverse events. The pharmacokinetics in both monotherapy and combination arms were dose linear and not affected by PEG-INF. CONCLUSION NIM811 monotherapy resulted in a normalization of liver transaminases in the absence of significant virological response. The combination of NIM811 and pegylated interferon alpha showed significant antiviral activity compared to interferon alone in genotype 1 HCV relapsers. The use of oral cyclophilin inhibitors as part of a combination regime for treatment of hepatitis C, especially to deter resistance, holds promise.
Antimicrobial Agents and Chemotherapy | 2012
Anna Trzasko; Jennifer A. Leeds; Jens Praestgaard; Matthew J. LaMarche; David McKenney
ABSTRACT LFF571 is a novel semisynthetic thiopeptide antibiotic with potent activity against a variety of Gram-positive pathogens, including Clostridium difficile. In vivo efficacy of LFF571 was compared to vancomycin in a hamster model of C. difficile infection (CDI). Infection was induced in Golden Syrian hamsters using a toxigenic strain of C. difficile. Treatment started 24 h postinfection and consisted of saline, vancomycin, or LFF571. Cox regression was used to analyze survival data from a cohort of animals evaluated across seven serial experimental groups treated with vancomycin at 20 mg/kg, LFF571 at 5 mg/kg, or vehicle alone. Survival was right censored; animals were not observed beyond day 21. At death or end of study, cecal contents were tested for C. difficile toxins A and B. In summary, the data showed that 5 mg/kg LFF571 decreased the risk of death by 79% (P < 0.0001) and 69% (P = 0.0022) compared with saline and 20 mg/kg vancomycin, respectively. Further analysis of the pooled data indicated that the survival benefit of LFF571 treatment at 5 mg/kg compared to vancomycin at 20 mg/kg was due primarily to a decrease in the risk of recurrence after end of treatment. Animals successfully treated with LFF571 or vancomycin had no detectable C. difficile toxin. Overall, LFF571 was more efficacious at the end of the study, at a lower dose, and with fewer recurrences, than vancomycin in the hamster model of CDI. LFF571 is being assessed in humans for safety and efficacy in the treatment of C. difficile infections.
Antimicrobial Agents and Chemotherapy | 2015
Kathleen M. Mullane; Christine Lee; Adam Bressler; Martha Buitrago; Karl Weiss; Kristina Dabovic; Jens Praestgaard; Jennifer A. Leeds; Johanne Blais; Peter Pertel
ABSTRACT Clostridium difficile infection causes serious diarrheal disease. Although several drugs are available for treatment, including vancomycin, recurrences remain a problem. LFF571 is a semisynthetic thiopeptide with potency against C. difficile in vitro. In this phase 2 exploratory study, we compared the safety and efficacy (based on a noninferiority analysis) of LFF571 to those of vancomycin used in adults with primary episodes or first recurrences of moderate C. difficile infection. Patients were randomized to receive 200 mg of LFF571 or 125 mg of vancomycin four times daily for 10 days. The primary endpoint was the proportion of clinical cures at the end of therapy in the per-protocol population. Secondary endpoints included clinical cures at the end of therapy in the modified intent-to-treat (mITT) population, the time to diarrhea resolution, and the recurrence rate. Seventy-two patients were randomized, with 46 assigned to receive LFF571. Based on the protocol-specified definition, the rate of clinical cure for LFF571 (90.6%) was noninferior to that of vancomycin (78.3%). The 30-day sustained cure rates for LFF571 and vancomycin were 56.7% and 65.0%, respectively, in the per-protocol population and 58.7% and 60.0%, respectively, in the modified intent-to-treat population. Using toxin-confirmed cases only, the recurrence rates were lower for LFF571 (19% versus 25% for vancomycin in the per-protocol population). LFF571 was generally safe and well tolerated. The incidence of adverse events (AEs) was higher for LFF571 (76.1% versus 69.2% for vancomycin), although more AEs in the vancomycin group were suspected to be related to the study drug (38.5% versus 32.6% for LFF571). One patient receiving LFF571 discontinued the study due to an AE. (This study has been registered at ClinicalTrials.gov under registration no. NCT01232595.)
Antimicrobial Agents and Chemotherapy | 2012
Lillian Ting; Jens Praestgaard; Nicole Grunenberg; Jenny C. Yang; Jennifer A. Leeds; Peter Pertel
ABSTRACT Clostridium difficile is the leading cause of hospital-acquired infectious diarrhea. LFF571 is a novel inhibitor of the prokaryotic translation elongation factor Tu and is active against a range of bacterial species, including C. difficile. This first-in-human study investigated the safety and pharmacokinetics of single and multiple ascending oral doses of LFF571 in healthy subjects. This was a randomized, double-blind, placebo-controlled study. Except for one cohort, LFF571 was given with a high-fat meal to all single-dose cohorts (25 mg, 100 mg, 400 mg, and 1,000 mg). In the multiple-dose cohorts (25 mg, 100 mg, or 200 mg every 6 h for 10 days), LFF571 was given without regard to food. A total of 56 subjects completed the study, with 32 and 25 receiving single and multiple doses, respectively. There were no deaths, no serious adverse events, and no subject withdrawals due to an adverse event. The most common adverse event was diarrhea; gastrointestinal pain or distension was also noted. Diarrhea did not develop more frequently among subjects who received LFF571 than among those who received a placebo. LFF571 had limited systemic exposure and high steady-state fecal concentrations. The highest concentration of LFF571 in serum (3.2 ng/ml) was observed after the last dose in a subject who received 200 mg every 6 h for 10 days. LFF571 was generally safe and well tolerated in single and multiple oral doses in healthy subjects. The minimal serum and high fecal concentrations support the further development of LFF571 for the treatment of C. difficile infections.
Antimicrobial Agents and Chemotherapy | 2015
Suraj G. Bhansali; Kathleen M. Mullane; Lillian Ting; Jennifer A. Leeds; Kristina Dabovic; Jens Praestgaard; Peter Pertel
ABSTRACT Clostridium difficile infection causes diarrheal disease with potentially fatal complications. Although treatments are available, including vancomycin, metronidazole, and fidaxomicin, the recurrence of disease after therapy remains a problem. LFF571 is a novel thiopeptide antibacterial that shows in vitro potency against C. difficile that is comparable to or greater than that of other clinically used antibiotics. Here, we compare the pharmacokinetics (PK) of LFF571 and vancomycin in patients with C. difficile infection as part of an early efficacy study. This multicenter, randomized, evaluator-blind, and active-controlled study evaluated the safety, efficacy, and pharmacokinetics of LFF571 in adults with primary episodes or first relapses of moderate C. difficile infections. Patients were randomized to receive 200 mg of LFF571 or 125 mg of vancomycin four times daily for 10 days. The PK parameters were calculated from drug concentrations measured in serum and fecal samples. The systemic exposure following oral administration of 200 mg of LFF571 four times per day for 10 days in patients with C. difficile infection was limited. The highest LFF571 serum concentration observed was 41.7 ng/ml, whereas the levels in feces at the end of treatment were between 107 and 12,900 μg/g. In comparison, the peak vancomycin level observed in serum was considerably higher, at 2.73 μg/ml; the levels of vancomycin in feces were not measured. Similar to healthy volunteers, patients with C. difficile infections exhibited high fecal concentrations and low serum levels of LFF571. These results are consistent with the retention of LFF571 in the lumen of the gastrointestinal tract. (This study has been registered at ClinicalTrials.gov under registration no. NCT01232595.)
Journal of the American Geriatrics Society | 2017
Daniel Rooks; Jens Praestgaard; Sam Hariry; Didier Laurent; Olivier Petricoul; Robert G. Perry; Estelle Lach-Trifilieff; Ronenn Roubenoff
To assess the effects of bimagrumab on skeletal muscle mass and function in older adults with sarcopenia and mobility limitations.
Antimicrobial Agents and Chemotherapy | 2016
Haiying Sun; Lillian Ting; Surendra Machineni; Jens Praestgaard; Andreas Kuemmell; Daniel S. Stein; Gangadhar Sunkara; Steven J. Kovacs; Stephen Villano; S. Ken Tanaka
ABSTRACT Omadacycline is a first-in-class aminomethylcycline antibiotic with microbiological activity against Gram-positive and Gram-negative aerobes and anaerobes and atypical bacteria that is being developed for the treatment of acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). The bioavailability of a phase 3 tablet formulation relative to that obtained via intravenous (i.v.) administration (and of other oral formulations relative to that of the phase 3 tablet) was investigated in an open-label, randomized, four-period, crossover study with healthy subjects age 18 to 50 years. Subjects received omadacycline at 100 mg i.v., 300 mg orally as two different tablet formulations with different dissolution profiles, and 300 mg as an oral solution. Plasma omadacycline concentrations were determined using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Twenty of 24 subjects completed all treatment periods. The two tablet formulations produced equivalent total exposures. The phase 3 tablet produced an exposure equivalent to that of the 100-mg i.v. dose, with a geometric mean ratio (90% confidence intervals [CI]) for area under the concentration-time curve from 0 h to infinity [AUC∞]) of 1.00 (0.93, 1.07). The absolute bioavailability of the tablets was approximately 34.5%. Intersubject variability was consistent among the oral formulations (∼20 to 25%). Single oral and i.v. doses of omadacycline were well tolerated; three subjects experienced mild adverse events (dizziness, nausea, and vomiting) that resolved without intervention. A 300-mg dose of the tablet formulation of omadacycline intended for use in phase 3 studies produced a total exposure equivalent to that of a 100-mg i.v. dose.
Antimicrobial Agents and Chemotherapy | 2013
Daniel S. Stein; June Ke; Grace Uy; Miroslava Bosheva; Yin Qi; Jens Praestgaard
ABSTRACT Telbivudine is a nucleoside analogue that has been approved for the treatment of chronic hepatitis B virus (HBV) infection in adults at 600 mg/day. We conducted a phase I, open-label, first-in-pediatrics study to investigate the safety and pharmacokinetics of a single dose of telbivudine in HBV-infected children and adolescents. Eligible patients were enrolled sequentially from older to younger groups, with evaluation of safety and available pharmacokinetic data after each stratum. Adolescent patients (>12 to 18 years) received a single dose of 600 mg telbivudine as an oral solution, while children aged 2 to 12 years received a single dose of 15 or 25 mg/kg of body weight up to a maximum of 600 mg. Telbivudine was well tolerated; all adverse events were mild, and none occurred in more than one patient. The plasma telbivudine concentration-versus-time profiles in adolescents given 600 mg were similar to the mean profile of healthy adults receiving the same oral dose. Children aged 2 to <6 and 6 to 12 years receiving a single 15-mg/kg dose showed similar plasma exposures. To predict the steady-state exposure, plasma concentration-versus-time profiles for patients aged 2 to 12 years (15 mg/kg) and >12 to 18 years (600 mg) were fitted to a two-compartment 1st-order, microconstant, lag time, 1st-order elimination pharmacokinetic (PK) model. This analysis predicted the following dosages to mimic exposures in healthy adults receiving 600 mg/day: 20 mg/kg/day for children 2 to 12 years and 600 mg/day for adolescents. Studies are ongoing to evaluate the efficacy of the recommended dose in pediatric patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00907894.)