Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens-Rainer Ohm is active.

Publication


Featured researches published by Jens-Rainer Ohm.


IEEE Transactions on Circuits and Systems for Video Technology | 2012

Overview of the High Efficiency Video Coding (HEVC) Standard

Gary J. Sullivan; Jens-Rainer Ohm; Woo-Jin Han; Thomas Wiegand

High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality. This paper provides an overview of the technical features and characteristics of the HEVC standard.


IEEE Transactions on Circuits and Systems for Video Technology | 2001

Color and texture descriptors

B. S. Manjunath; Jens-Rainer Ohm; Vinod V. Vasudevan; Akio Yamada

This paper presents an overview of color and texture descriptors that have been approved for the Final Committee Draft of the MPEG-7 standard. The color and texture descriptors that are described in this paper have undergone extensive evaluation and development during the past two years. Evaluation criteria include effectiveness of the descriptors in similarity retrieval, as well as extraction, storage, and representation complexities. The color descriptors in the standard include a histogram descriptor that is coded using the Haar transform, a color structure histogram, a dominant color descriptor, and a color layout descriptor. The three texture descriptors include one that characterizes homogeneous texture regions and another that represents the local edge distribution. A compact descriptor that facilitates texture browsing is also defined. Each of the descriptors is explained in detail by their semantics, extraction and usage. The effectiveness is documented by experimental results.


IEEE Transactions on Circuits and Systems for Video Technology | 2012

Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding (HEVC)

Jens-Rainer Ohm; Gary J. Sullivan; Heiko Schwarz; Thiow Keng Tan; Thomas Wiegand

The compression capability of several generations of video coding standards is compared by means of peak signal-to-noise ratio (PSNR) and subjective testing results. A unified approach is applied to the analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual, H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding (HEVC). The results of subjective tests for WVGA and HD sequences indicate that HEVC encoders can achieve equivalent subjective reproduction quality as encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less bit rate on average. The HEVC design is shown to be especially effective for low bit rates, high-resolution video content, and low-delay communication applications. The measured subjective improvement somewhat exceeds the improvement measured by the PSNR metric.


IEEE Transactions on Image Processing | 1994

Three-dimensional subband coding with motion compensation

Jens-Rainer Ohm

Three-dimensional (3-D) frequency coding is an alternative approach to hybrid coding concepts used in todays standards. The first part of this paper presents a study on concepts for temporal-axis frequency decomposition along the motion trajectory in video sequences. It is shown that, if a two-band split is used, it is possible to overcome the problem of spatial inhomogeneity in the motion vector field (MVF), which occurs at the positions of uncovered and covered areas. In these cases, original pixel values from one frame are placed into the lowpass-band signal, while displaced-frame-difference values are embedded into the highpass band. This technique is applicable with arbitrary MVFs; examples with block-matching and interpolative motion compensation are given. Derivations are first performed for the example of two-tap quadrature mirror filters (QMFs), and then generalized to any linear-phase QMFs. With two-band analysis and synthesis stages arranged as cascade structures, higher resolution frequency decompositions are realizable. In the second part of the paper, encoding of the temporal-axis subband signals is discussed. A parallel filterbank scheme was used for spatial subband decomposition, and adaptive lattice vector quantization was employed to approach the entropy rate of the 3-D subband samples. Coding results suggest that high-motion video sequences can be encoded at significantly lower rates than those achievable with conventional hybrid coders. Main advantages are the high energy compaction capability and the nonrecursive decoder structure. In the conclusion, the scheme is interpreted more generally, viewed as a motion-compensated short-time spectral analysis of video sequences, which can adapt to the quickness of changes. Although a 3-D multiresolution representation of the picture information is produced, a true multiresolution representation of motion information, based on spatio-temporal decimation and interpolation of the MVF, is regarded as the still-missing part.


Proceedings of the IEEE | 2005

Advances in Scalable Video Coding

Jens-Rainer Ohm

Scalable video coding is attractive due to the capability of reconstructing lower resolution or lower quality signals from partial bit streams. This allows for simple solutions in adaptation to network and terminal capabilities. Different modalities of scalability are specified by video coding standards like MPEG-2 and MPEG-4. This paper gives a short overview over these techniques and analyzes in more detail the encoder/decoder drift problem, which is the major reason why scalable coding has been significantly less efficient than single-layer coding in most of these implementations. Only recently, new scalable video coding technology has evolved, which seems to close the gap of compression performance compared to state of the art single-layer video coding. New methods of efficient enhancement layer prediction were developed to improve traditional (motion-compensated hybrid) scalable coders, providing more flexible compromises on the drift problem. As a new technology trend, motion-compensated spatiotemporal wavelet coding has matured which entirely discards the drift and allows most flexible combinations of spatial, temporal, and signal-to-noise ratio (SNR) scalability with fine granularity over a broad range of data rates.


IEEE Journal of Selected Topics in Signal Processing | 2013

Standardized Extensions of High Efficiency Video Coding (HEVC)

Gary J. Sullivan; Jill M. Boyce; Ying Chen; Jens-Rainer Ohm; C. Andrew Segall; Anthony Vetro

This paper describes extensions to the High Efficiency Video Coding (HEVC) standard that are active areas of current development in the relevant international standardization committees. While the first version of HEVC is sufficient to cover a wide range of applications, needs for enhancing the standard in several ways have been identified, including work on range extensions for color format and bit depth enhancement, embedded-bitstream scalability, and 3D video. The standardization of extensions in each of these areas will be completed in 2014, and further work is also planned. The design for these extensions represents the latest state of the art for video coding and its applications.


IEEE Transactions on Circuits and Systems for Video Technology | 1999

Long-term global motion estimation and its application for sprite coding, content description, and segmentation

Aljoscha Smolic; Thomas Sikora; Jens-Rainer Ohm

We present a new technique for long-term global motion estimation of image objects. The estimated motion parameters describe the continuous and time-consistent motion over the whole sequence relatively to a fixed reference coordinate system. The proposed method is suitable for the estimation of affine motion parameters as well as for higher order motion models like the parabolic model-combining the advantages of feature matching and optical flow techniques. A hierarchical strategy is applied for the estimation, first translation, affine motion, and finally higher order motion parameters, which is robust and computationally efficient. A closed-loop prediction scheme is applied to avoid the problem of error accumulation in long-term motion estimation. The presented results indicate that the proposed technique is a very accurate and robust approach for long-term global motion estimation, which can be used for applications such as MPEG-4 sprite coding or MPEG-7 motion description. We also show that the efficiency of global motion estimation can be significantly increased if a higher order motion model is applied, and we present a new sprite coding scheme for on-line applications. We further demonstrate that the proposed estimator serves as a powerful tool for segmentation of video sequences.


Proceedings of SPIE | 2010

Recent developments in standardization of high efficiency video coding (HEVC)

Gary J. Sullivan; Jens-Rainer Ohm

This paper reports on recent developments in video coding standardization, particularly focusing on the Call for Proposals (CfP) on video coding technology made jointly in January 2010 by ITU-T VCEG and ISO/IEC MPEG and the April 2010 responses to that Call. The new standardization initiative is referred to as High Efficiency Video Coding (HEVC) and its development has been undertaken by a new Joint Collaborative Team on Video Coding (JCT-VC) formed by the two organizations. The HEVC standard is intended to provide significantly better compression capability than the existing AVC (ITU-T H.264 | ISO/IEC MPEG-4 Part 10) standard. The results of the CfP are summarized, and the first steps towards the definition of the HEVC standard are described.


Signal Processing-image Communication | 2004

Interframe wavelet coding-motion picture representation for universal scalability

Jens-Rainer Ohm; Mihaela van der Schaar; John W. Woods

Scalability at the bitstream level is an important feature for encoded video that is to be transmitted and stored with a variety of target rates or to be replayed on devices with different capabilities and resolutions. This is attractive for digital cinema applications, where the same encoded source representation could seamlessly be used for purposes of archival and various distribution channels. Conventional high-performance video compression schemes are based on the method of motion-compensated prediction, using a recursive loop in the prediction process. Due to this recursion and the inherent drift in cases of deviation between encoder and decoder states, scalability is difficult to realize and typically effects a penalty in compression performance for prediction-based coders. The method of interframe wavelet coding overcomes this limitation by replacing the prediction along the time axis by a wavelet filter, which can nevertheless be operated in combination with motion compensation. Recent advances in motion-compensated temporal filtering (MCTF) have proven that combination with arbitrary motion compensation methods is possible. Compression performance is achieved that is comparable with state of the art single-layer coders targeting only for one rate. The paper provides an explanation of MCTF methods and the resulting 3D wavelet representation, and shows results obtained in the context of encoding digital cinema (DC) materials.


IEEE Transactions on Circuits and Systems for Video Technology | 2016

Overview of the Multiview and 3D Extensions of High Efficiency Video Coding

Gerhard Tech; Ying Chen; Karsten Müller; Jens-Rainer Ohm; Anthony Vetro; Ye-Kui Wang

The High Efficiency Video Coding (HEVC) standard has recently been extended to support efficient representation of multiview video and depth-based 3D video formats. The multiview extension, MV-HEVC, allows efficient coding of multiple camera views and associated auxiliary pictures, and can be implemented by reusing single-layer decoders without changing the block-level processing modules since block-level syntax and decoding processes remain unchanged. Bit rate savings compared with HEVC simulcast are achieved by enabling the use of inter-view references in motion-compensated prediction. The more advanced 3D video extension, 3D-HEVC, targets a coded representation consisting of multiple views and associated depth maps, as required for generating additional intermediate views in advanced 3D displays. Additional bit rate reduction compared with MV-HEVC is achieved by specifying new block-level video coding tools, which explicitly exploit statistical dependencies between video texture and depth and specifically adapt to the properties of depth maps. The technical concepts and features of both extensions are presented in this paper.

Collaboration


Dive into the Jens-Rainer Ohm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Li

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Anthony Vetro

Mitsubishi Electric Research Laboratories

View shared research outputs
Top Co-Authors

Avatar

Bin Zhang

RWTH Aachen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge