Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Soltwisch is active.

Publication


Featured researches published by Jens Soltwisch.


Science | 2015

Mass spectrometry imaging with laser-induced postionization

Jens Soltwisch; Hans Kettling; Simeon Vens-Cappell; Marcel Wiegelmann; Johannes Müthing; Klaus Dreisewerd

Imaging lipid composition Chemical imaging of cell membranes can be performed with matrix-assisted laser desorption/ionization mass spectrometry (MALDI), but low ionization efficiency often leads to a signal dominated by the main lipid components, such as abundant phosphatidylcholine species. Soltwisch et al. used a tunable laser for post-ionization of neutral species to boost the signal for other membrane components, such as cholesterol and phospho- and glycolipids. Imaging of cells and tissues with these methods allows differentiation based on a more extensive chemical signature. Science, this issue p. 211 The sensitivity of mass spectrometric imaging of membrane lipids is boosted by laser-induced gas-phase ionization. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can simultaneously record the lateral distribution of numerous biomolecules in tissue slices, but its sensitivity is restricted by limited ionization. We used a wavelength-tunable postionization laser to initiate secondary MALDI-like ionization processes in the gas phase. In this way, we could increase the ion yields for numerous lipid classes, liposoluble vitamins, and saccharides, imaged in animal and plant tissue with a 5-micrometer-wide laser spot, by up to two orders of magnitude. Critical parameters for initiation of the secondary ionization processes are pressure of the cooling gas in the ion source, laser wavelength, pulse energy, and delay between the two laser pulses. The technology could enable sensitive MALDI-MS imaging with a lateral resolution in the low micrometer range.


Analytical Chemistry | 2012

Ion Yields in UV-MALDI Mass Spectrometry As a Function of Excitation Laser Wavelength and Optical and Physico-Chemical Properties of Classical and Halogen-Substituted MALDI Matrixes

Jens Soltwisch; Thorsten W. Jaskolla; Franz Hillenkamp; Michael Karas; Klaus Dreisewerd

The laser wavelength constitutes a key parameter in ultraviolet-matrix-assisted laser desorption ionization-mass spectrometry (UV-MALDI-MS). Optimal analytical results are only achieved at laser wavelengths that correspond to a high optical absorption of the matrix. In the presented work, the wavelength dependence and the contribution of matrix proton affinity to the MALDI process were investigated. A tunable dye laser was used to examine the wavelength range between 280 and 355 nm. The peptide and matrix ion signals recorded as a function of these irradiation parameters are displayed in the form of heat maps, a data representation that furnishes multidimensional data interpretation. Matrixes with a range of proton affinities from 809 to 866 kJ/mol were investigated. Among those selected are the standard matrixes 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA) as well as five halogen-substituted cinnamic acid derivatives, including the recently introduced 4-chloro-α-cyanocinnamic acid (ClCCA) and α-cyano-2,4-difluorocinnamic acid (DiFCCA) matrixes. With the exception of DHB, the highest analyte ion signals were obtained toward the red side of the peak optical absorption in the solid state. A stronger decline of the molecular analyte ion signals generated from the matrixes was consistently observed at the low wavelength side of the peak absorption. This effect is mainly the result of increased fragmentation of both analyte and matrix ions. Optimal use of multiply halogenated matrixes requires adjustment of the excitation wavelength to values below that of the standard MALDI lasers emitting at 355 (Nd:YAG) or 337 nm (N(2) laser). The combined data provide new insights into the UV-MALDI desorption/ionization processes and indicate ways to improve the analytical sensitivity.


Analytical Chemistry | 2014

MALDI mass spectrometry imaging of bioactive lipids in mouse brain with a Synapt G2-S mass spectrometer operated at elevated pressure: improving the analytical sensitivity and the lateral resolution to ten micrometers.

Hans Kettling; Simeon Vens-Cappell; Jens Soltwisch; Alexander Pirkl; Jörg Haier; Johannes Müthing; Klaus Dreisewerd

Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.


Analytical Chemistry | 2012

Infrared Matrix-Assisted Laser Desorption/Ionization Orthogonal-Time-of-Flight Mass Spectrometry Employing a Cooling Stage and Water Ice As a Matrix

Alexander Pirkl; Jens Soltwisch; Felix Draude; Klaus Dreisewerd

Although water ice has been utilized in the past as a matrix for infrared matrix-assisted laser desorption/ionization mass spectrometry (IR-MALDI-MS), it has not found a wider use due to limitations in the analytical performance and technical demands on the employment of the necessary cooling stage. Here, we developed a temperature-controlled sample stage for use with an orthogonal time-of-flight mass spectrometer (MALDI-o-TOF-MS). The stage utilizes a combination of liquid nitrogen cooling and counterheating with a Peltier element. It allows adjustment of the sample temperature between ~-120 °C and room temperature. To identify optimal irradiation conditions for IR-MALDI with the water ice matrix, we first investigated the influence of excitation wavelength, varied between 2.7 and 3.1 μm, and laser fluence on the signal intensities of molecular substance P ions. These data suggest the involvement of transient melting of the ice during the laser pulse and primary energy deposition into liquid water. As a consequence, the best analytical performance is obtained at a wavelength corresponding to the absorption maximum of liquid water of about 2.94 μm. The current data significantly surpass the previously reported analytical features. The particular softness of the method is, for example, exemplified by the analysis of noncovalently bound holo-myoglobin and of ribonuclease B. This is also the first report demonstrating the analysis of an IgG monoclonal antibody (MW ~ 150 kDa) from a water ice matrix. Untypical for MALDI-MS, high charge states of multiply protonated species were moreover observed for some of the investigated peptides and even for lacto-N-fucopentaose II oligosaccharides. Using water ice as matrix is of particular interest for MALDI MS profiling and imaging applications since matrix-free spectra are produced. The MS and tandem MS analysis of metabolites directly from frozen food samples is demonstrated with the example of a strawberry fruit.


Analytical Chemistry | 2009

Effect of Gas Pressure and Gas Type on the Fragmentation of Peptide and Oligosaccharide Ions Generated in an Elevated Pressure UV/ IR-MALDI Ion Source Coupled to an Orthogonal Time-of-Flight Mass Spectrometer

Jens Soltwisch; Jamal Souady; Stefan Berkenkamp; Klaus Dreisewerd

Matrix-assisted laser desorption ionization (MALDI) allows for the mass spectrometric (MS) analysis of thermally labile, non-volatile biomolecules. However, some residual analyte fragmentation typically accompanies the phase transition from the condensed to the gas phase and following plume expansion, even under optimized conditions. In-source decay (ISD) and post-source decay (PSD) MALDI MS are two techniques that make use of these phenomena and that can provide useful structural information by producing characteristic fragment ions of the analyte compounds. In orthogonal extracting time-of-flight mass spectrometry (o-TOF-MS), the pressure of the cooling gas in the ion source has a strong influence on the extent of analyte ion fragmentation. We investigated the effect of this parameter on peptide and oligosaccharide fragmentation by examining a range of pressures (from 0.05-1.8 mbar) in combination with seven different buffer gases (He, Ne, Ar, N(2), CO(2), CH(3), isobutane). Ions were generated by ultraviolet (UV) and/or by infrared (IR) MALDI. The influence of the ion extraction voltage on the analyte fragmentation also was investigated for a selected set of gas parameters. We observed that individual fragment ions exhibit characteristic fragment yield-pressure dependencies that can be classified into three groups. Type I ions resemble species that are also found in MALDI PSD MS analysis, while type II ions resemble typical ISD fragments. The yield-pressure relationship of type III ions suggests that these are the result of a combination of both processes. Comparing the yields of fragmentation for the different buffer gases reveals a correlation between their internal degrees of freedom and their collisional cooling efficiency. Changing the buffer gas pressure and/or extraction field provides an easy means to influence analyte ion fragmentation and to switch from the primary production of one type of fragment species to another. The method can therefore facilitate the structural characterization of MALDI-generated ions.


Analytical Chemistry | 2014

MALDI Mass Spectrometry Imaging in Microscope Mode with Infrared Lasers: Bypassing the Diffraction Limits

Jens Soltwisch; Guido Göritz; Julia H. Jungmann; András Kiss; Donald F. Smith; Shane R. Ellis; Ron M. A. Heeren

This letter demonstrates the use of infrared matrix-assisted laser desorption/ionization coupled with microscope mode mass spectrometry imaging. It is aimed to explore the use of intrinsic water in tissue as a matrix for imaging at spatial resolutions below the diffraction limit of the employed IR optics. Stigmatic ion optics with a magnification factor of ~70 were used to project the spatial distribution of produced ions onto a detector while separating ions with different mass-to-charge ratios using a time-of-flight mass spectrometer. A pixelated detector was used to simultaneously record arrival time and impact position. A previously described dried-droplet sample system of 2,5-dihydroxybenzoic acid (DHB) and 5 peptides covered by a copper grid for defined surface structure was used to benchmark the light- and ion-optical setup for spatial resolution and mass spectrometric performance. A spatial resolving power of 9.8 μm, well below the optical limit of diffraction (14 μm for the given setup), was established. After, frozen cryo-sections from a biological model system were measured by exploiting the endogenous water content as a matrix. Principal component analysis enabled a clear distinction between distinct tissue regions identified by both light microscopy and MS imaging.


Analytical Chemistry | 2016

Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of Drosophila melanogaster

Ann-Christin Niehoff; Jacqueline Schulz; Jens Soltwisch; Sören Meyer; Hans Kettling; Michael R. Sperling; Astrid Jeibmann; Klaus Dreisewerd; Kevin A. Francesconi; Tanja Schwerdtle; Uwe Karst

Arsenic-containing lipids (arsenolipids) are natural products of marine organisms such as fish, invertebrates, and algae, many of which are important seafoods. A major group of arsenolipids, namely, the arsenic-containing hydrocarbons (AsHC), have recently been shown to be cytotoxic to human liver and bladder cells, a result that has stimulated interest in the chemistry and toxicology of these compounds. In this study, elemental laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) and molecular matrix-assisted laser desorption/ionization (MALDI-)MS were used to image and quantify the uptake of an AsHC in the model organism Drosophila melanogaster. Using these two complementary methods, both an enrichment of arsenic and the presence of the AsHC in the brain were revealed, indicating that the intact arsenolipid had crossed the blood-brain barrier. Simultaneous acquisition of quantitative elemental concentrations and molecular distributions could allow new insight into organ-specific enrichment and possible transportation processes of arsenic-containing bioactive compounds in living organisms.


Environmental Microbiology | 2011

Enterohaemorrhagic Escherichia coli haemolysin is cleaved and inactivated by serine protease EspPα

Jens Brockmeyer; Thomas Aldick; Jens Soltwisch; Wenlan Zhang; Philip I. Tarr; André Weiss; Klaus Dreisewerd; Johannes Müthing; Martina Bielaszewska; Helge Karch

The haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly) and the serine protease EspPα are putative virulence factors of EHEC. We investigated the interplay between these secreted factors and demonstrate that EspPα cleaves the 107 kDa large EHEC-Hly. Degradation was observed when purified EspPα was added to a growing culture of an EHEC-Hly-expressing strain, with isolated proteins and with coexpressing strains, and was independent of the EHEC serotype. EHEC-Hly breakdown occurred as a multistage process with the formation of characteristic fragments with relative molecular masses of ∼82 kDa and/or ∼84 kDa and ∼34 kDa. The initial cleavage occurred in the N-terminal hydrophobic domain of EHEC-Hly between Leu235 and Ser236 and abolished its haemolytic activity. In a cellular infection system, the cytolytic potential of EHEC-Hly-secreting recombinant strains was abolished when EspPα was coexpressed. EHEC in contact with human intestinal epithelial cells simultaneously upregulated their EHEC-Hly and EspP indicating that both molecules might interact under physiological conditions. We propose the concept of bacterial effector molecule interference (BEMI), reflecting the concerted interplay of virulence factors. Interference between effector molecules might be an additional way to regulate virulence functions and increases the complexity of monomolecular phenotypes.


Analytical Chemistry | 2011

Analysis of noncovalent chitinase-chito-oligosaccharide complexes by infrared-matrix assisted laser desorption ionization and nanoelectrospray ionization mass spectrometry.

Anette I. Dybvik; Anne Line Norberg; Veronika Schute; Jens Soltwisch; Jasna Peter-Katalinić; Kjell M. Vårum; Vincent G. H. Eijsink; Klaus Dreisewerd; Michael Mormann; Morten Sørlie

Transferring noncovalently bound complexes from the condensed phase into the gas phase represents a challenging task due to weak intermolecular bonds that have to be maintained during the phase transition. Currently, electrospray ionization (ESI) is the standard mass spectrometric (MS) technique to analyze noncovalent complexes. Although infrared matrix-assisted laser desorption ionization (IR-MALDI)-MS also provides particular soft desorption/ionization conditions, this method has so far hardly been applied for the analysis of noncovalent complexes. In this study, we employed IR-MALDI orthogonal time-of-flight (o-TOF)-MS in combination with the liquid matrix glycerol to characterize the specific complex formation of chito-oligosaccharide (CHOS) ligands with two variants of Chitinase A (ChiA) from Serratia marcescens, the inactive E315Q mutant and the active W167A mutant, respectively. The IR-MALDI-o-TOF-MS results were compared to those obtained using nano-ESI-quadrupole (q)-TOF-MS and ultraviolet (UV)-MALDI-o-TOF-MS. Using IR-MALDI-o-TOF-MS, specific noncovalent complexes between ChiA and CHOS were detected with distributions between enzymes with bound oligosaccharides vs free enzymes that were essentially identical to those obtained by nano-ESI-q-TOF-MS. Chitinase-CHOS complexes were not detected when UV-MALDI was employed for desorption/ionization. The results show that IR-MALDI-MS can be a valuable tool for fast and simple screening of noncovalent enzyme-ligand interactions.


Analytical Chemistry | 2014

Progress in detection and structural characterization of glycosphingolipids in crude lipid extracts by enzymatic phospholipid disintegration combined with thin-layer chromatography immunodetection and IR-MALDI mass spectrometry.

Ivan U. Kouzel; Alexander Pirkl; Gottfried Pohlentz; Jens Soltwisch; Klaus Dreisewerd; Helge Karch; Johannes Müthing

In order to proceed in detection and structural analysis of glycosphingolipids (GSLs) in crude lipid extracts, which still remains a challenge in glycosphingolipidomics, we developed a strategy to structurally characterize neutral GSLs in total lipid extracts prepared from in vitro propagated human monocytic THP-1 cells, which were used as a model cell line. The procedure divides into (1) extraction of total lipids from cellular material, (2) enzymatical disintegration of phospholipids by treatment of the crude lipid extract with phospholipase C, (3) subsequent multiple thin-layer chromatography (TLC) overlay detection of individual GSLs with a mixture of various anti-GSL antibodies, and (4) structural analysis of immunostained GSLs directly on the TLC plate using infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF MS) in combination with collision-induced dissociation (CID). Whereas GSLs were mostly undetectable in untreated crude lipid extracts, pretreatment with phospholipase C resulted in clear-cut mass spectra. MS(1) and MS(2) analysis gave similar results when compared to those obtained with a highly purified neutral GSL preparation of THP-1 cells, which served as a control. We could demonstrate in this study the feasibility of simultaneous multiple immunodetection of individual neutral GSLs in one and the same TLC run and their structural characterization in crude lipid extracts after phospholipase C treatment, thereby avoiding laborious and long-lasting sample purification. This powerful combinatorial technique allows for efficient structural characterization of GSLs in small tissue samples and takes a step forward in the emerging field of glycosphingolipidomics.

Collaboration


Dive into the Jens Soltwisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge Karch

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge