Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Stougaard is active.

Publication


Featured researches published by Jens Stougaard.


Nature | 2003

Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases

Simona Radutoiu; Lene Heegaard Madsen; Esben Bjørn Madsen; Hubert H. Felle; Yosuke Umehara; Mette Grønlund; Shusei Sato; Yasukazu Nakamura; Satoshi Tabata; Niels Sandal; Jens Stougaard

Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.


Nature | 2002

A plant receptor-like kinase required for both bacterial and fungal symbiosis

Silke Stracke; Catherine Kistner; Satoko Yoshida; Lonneke Mulder; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Niels Sandal; Jens Stougaard; Krzysztof Szczyglowski; Martin Parniske

Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade of plants. Both symbioses rely on partially overlapping genetic programmes. We have identified the molecular basis for this convergence by cloning orthologous SYMRK (‘symbiosis receptor-like kinase’) genes from Lotus and pea, which are required for both fungal and bacterial recognition. SYMRK is predicted to have a signal peptide, an extracellular domain comprising leucine-rich repeats, a transmembrane and an intracellular protein kinase domain. Lotus SYMRK is required for a symbiotic signal transduction pathway leading from the perception of microbial signal molecules to rapid symbiosis-related gene activation. The perception of symbiotic fungi and bacteria is mediated by at least one common signalling component, which could have been recruited during the evolution of root nodule symbioses from the already existing arbuscular mycorrhiza symbiosis.


Nature | 2003

A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals

Esben Bjørn Madsen; Lene Heegaard Madsen; Simona Radutoiu; Magdalena Olbryt; Magdalena Rakwalska; Krzysztof Szczyglowski; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Niels Sandal; Jens Stougaard

Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.


Nature | 1999

A plant regulator controlling development of symbiotic root nodules

Leif Schauser; Andreas Roussis; Jiri Stiller; Jens Stougaard

Symbiotic nitrogen-fixing root nodules on legumes are founded by root cortical cells that de-differentiate and restart cell division to establish nodule primordia. Bacterial microsymbionts invade these primordia through infection threads laid down by the plant and, after endocytosis, membrane-enclosed bacteroids occupy cells in the nitrogen-fixing tissue of functional nodules. The bacteria excrete lipochitin oligosaccharides, triggering a developmental process that is controlled by the plant and can be suppressed. Nodule inception initially relies on cell competence in a narrow infection zone located just behind the growing root tip. Older nodules then regulate the number of nodules on a root system by suppressing the development of nodule primordia. To identify the regulatory components that act early in nodule induction, we characterized a transposon-tagged Lotus japonicus mutant, nin (for nodule inception), arrested at the stage of bacterial recognition. We show that nin is required for the formation of infection threads and the initiation of primordia. NIN protein has regional similarity to transcription factors, and the predicted DNA-binding/dimerization domain identifies and typifies a consensus motif conserved in plant proteins with a function in nitrogen-controlled development.


Nature | 2002

Shoot control of root development and nodulation is mediated by a receptor-like kinase

Lene Krusell; Lene Heegaard Madsen; Shusei Sato; Grégoire Aubert; Aratz Genua; Krzysztof Szczyglowski; Gérard Duc; Takakazu Kaneko; Satoshi Tabata; Frans J. de Bruijn; Eloísa Pajuelo; Niels Sandal; Jens Stougaard

In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.


Nature | 2006

Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development.

Leila Tirichine; Haruko Imaizumi-Anraku; Satoko Yoshida; Yasuhiro Murakami; Lene Heegaard Madsen; Hiroki Miwa; Tomomi Nakagawa; Niels Sandal; Anita S. Albrektsen; Masayoshi Kawaguchi; Allan Downie; Shusei Sato; Satoshi Tabata; Hiroshi Kouchi; Martin Parniske; Shinji Kawasaki; Jens Stougaard

Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin–oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.


Nature Communications | 2010

The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus

Lene Heegaard Madsen; Leila Tirichine; Anna Jurkiewicz; John T. Sullivan; Anne B. Heckmann; Anita S. Bek; Clive W. Ronson; Euan K. James; Jens Stougaard

Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.


The Plant Cell | 2005

Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis

Catherine Kistner; Thilo Winzer; Andrea Pitzschke; Lonneke Mulder; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Niels Sandal; Jens Stougaard; K. Judith Webb; Krzysztof Szczyglowski; Martin Parniske

A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root epidermal or cortical cells. To describe the phenotype of these mutants at the molecular level, we screened for differentiating transcriptional responses of mutant and wild-type roots by large-scale gene expression profiling using cDNA-amplified fragment length polymorphism. Two percent of root transcripts was found to increase in abundance during AM development, from which a set of AM-regulated marker genes was established. A Ser-protease (SbtS) and a Cys-protease (CysS) were also activated during root nodule development. AM-induced transcriptional activation was abolished in roots carrying mutations in common symbiosis genes, suggesting a central position of these genes in a pathway leading to the transcriptional activation of downstream genes. By contrast, AM fungus-induced gene repression appeared to be unaffected in mutant backgrounds, which indicates the presence of additional independent signaling pathways.


The EMBO Journal | 2007

LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range

Simona Radutoiu; Lene Heegaard Madsen; Esben Bjørn Madsen; Anna Jurkiewicz; Eigo Fukai; Esben M. Quistgaard; Anita S. Albrektsen; Euan K. James; Søren Thirup; Jens Stougaard

Legume–Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.


Molecular Genetics and Genomics | 1998

Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus

Leif Schauser; Kurt Handberg; Niels Sandal; Jiri Stiller; Thomas Thykjaer; Eloísa Pajuelo; Annette Kamgaard Nielsen; Jens Stougaard

Abstract Nitrogen-fixing root nodules develop on legumes as a result of an interaction between host plants and soil bacteria collectively referred to as rhizobia. The organogenic process resulting in nodule development is triggered by the bacterial microsymbiont, but genetically controlled by the host plant genome. Using T-DNA insertion as a tool to identify novel plant genes that regulate nodule ontogeny, we have identified two putatively tagged symbiotic loci, Ljsym8 and Ljsym13, in the diploid legume Lotus japonicus. The sym8 mutants are arrested during infection by the bacteria early in the developmental process. The sym13 mutants are arrested in the final stages of infection, and ineffective nodules are formed. These two plant mutant lines were identified in progeny from 1112 primary transformants obtained after Agrobacterium tumefaciens T-DNA-mediated transformation of L. japonicus and subsequent screening for defects in the symbiosis with Mesorhizobium loti. Additional nontagged mutants arrested at different developmental stages were also identified and genetic complementation tests assigned all the mutations to 16 monogenic symbiotic loci segregating recessive mutant alleles. In the screen reported here independent symbiotic loci thus appeared with a frequency of ∼1.5%, suggesting that a relatively large set of genes is required for the symbiotic interaction.

Collaboration


Dive into the Jens Stougaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Tabata

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Szczyglowski

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge