Jens Thostrup Bukrinski
Novozymes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Thostrup Bukrinski.
Journal of Controlled Release | 2016
Konrad Bienk; Michael Lykke Hvam; Malgorzata M. Pakula; Frederik Dagnæs-Hansen; Jesper Wengel; Birgitte M. Malle; Ulrich Kragh-Hansen; Jason Cameron; Jens Thostrup Bukrinski; Kenneth A. Howard
Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing.
Angewandte Chemie | 2014
Lorine Brülisauer; Gina Valentino; Sakura Morinaga; Kübra Cam; Jens Thostrup Bukrinski; Marc A. Gauthier; Jean-Christophe Leroux
Disulfide-containing IgG-, Fc-, or albumin-based prodrugs that rely on FcRn-trafficking by endothelial cells for prolonged circulation in the body might be hampered by premature bio-reduction processes during FcRn-mediated recycling events. A detailed bio-reduction analysis of redox-sensitive albumin conjugates in two FcRn-expressing cell lines has been performed. The obtained results indicate that the FcRn-mediated recycling pathway is not (or is only poorly) bio-reducing.
Biophysical Journal | 2015
Tine Maja Frederiksen; Pernille Sønderby; Line A. Ryberg; Pernille Harris; Jens Thostrup Bukrinski; Anne M. Scharff-Poulsen; Maria Northved Elf-Lind; Günther H. Peters
The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1, liraglutide has an added fatty acid (FA) moiety that causes oligomerization of liraglutide as suggested by small-angle x-ray scattering (SAXS) and multiangle static light scattering (MALS) results. SAXS data suggested a global shape of a hollow elliptical cylinder of size hexa-, hepta-, or octamer, whereas MALS data indicate a hexamer. To elaborate further on the stability of these oligomers and the role of the FA chains, a series of molecular-dynamics simulations were carried out on 11 different hexa-, hepta-, and octameric systems. Our results indicate that interactions of the fatty acid chains contribute noticeably to the stabilization. The simulation results indicate that the heptamer with paired FA chains is the most stable oligomer when compared to the 10 other investigated structures. Theoretical SAXS curves extracted from the simulations qualitatively agree with the experimentally determined SAXS curves supporting the view that liraglutide forms heptamers in solution. In agreement with the SAXS data, the heptamer forms a water-filled oligomer of elliptical cylindrical shape.
Journal of Chemical Information and Modeling | 2017
Pernille Sønderby; Åsmund Rinnan; Jesper J. Madsen; Pernille Harris; Jens Thostrup Bukrinski; Guenther H. H. J. Peters
We have performed a benchmark to evaluate the relative success of using small-angle X-ray scattering (SAXS) data as constraints (hereafter termed SAXSconstrain) in the RosettaDock protocol (hereafter termed RosettaDockSAXS). For this purpose, we have chosen 38 protein complex structures, calculated the theoretical SAXS data for the protein complexes using the program CRYSOL, and then used the SAXS data as constraints. We further considered a few examples where crystal structures and experimental SAXS data are available. SAXSconstrain were added to the protocol in the initial, low-resolution docking step, allowing fast rejection of complexes that violate the shape restraints imposed by the SAXS data. Our results indicate that the implementation of SAXSconstrain in general reduces the sampling space of possible protein-protein complexes significantly and can indeed increase the probability of finding near-native protein complexes. The methodology used is based on rigid-body docking and works for cases where no or minor conformational changes occur upon binding of the docking partner. In a wider perspective, the strength of RosettaDockSAXS lies in the combination of low-resolution structural information on protein complexes in solution from SAXS experiments with protein-protein interaction energies obtained from RosettaDock, which will allow the prediction of unknown three-dimensional atomic structures of protein-protein complexes.
Biochemistry | 2017
Jens Thostrup Bukrinski; Pernille Sønderby; Filipa Antunes; Birgitte Andersen; Esben Gjerloeff Wedebye Schmidt; Guenther H. H. J. Peters; Pernille Harris
Glucagon-like peptide 1 (GLP-1) is a small incretin hormone stimulated by food intake, resulting in an amplification of the insulin response. Though GLP-1 is interesting as a drug candidate for the treatment of type 2 diabetes mellitus, its short plasma half-life of <3 min limits its clinical use. A strategy for extending the half-life of GLP-1 utilizes the long half-life of human serum albumin (HSA) by combining the two via chemical conjugation or genetic fusion. HSA has a plasma half-life of around 21 days because of its interaction with the neonatal Fc receptor (FcRn) expressed in endothelial cells of blood vessels, which rescues circulating HSA from lysosomal degradation. We have conjugated GLP-1 to C34 of native sequence recombinant HSA (rHSA) and two rHSA variants, one with increased and one with decreased binding affinity for human FcRn. We have investigated the impact of conjugation on FcRn binding affinities, GLP-1 potency, and pharmacokinetics, combined with the solution structure of the rHSA variants and GLP-1-albumin conjugates. The solution structures, determined by small-angle X-ray scattering, show the GLP-1 pointing away from the surface of rHSA. Combining the solution structures with the available structural information about the FcRn and GLP-1 receptor obtained from X-ray crystallography, we can explain the observed in vitro and in vivo behavior. We conclude that the conjugation of GLP-1 to rHSA does not affect the interaction between rHSA and FcRn, while the observed decrease in the potency of GLP-1 can be explained by a steric hindrance of binding of GLP-1 to its receptor.
Journal of Structural Biology | 2017
Christian Grundahl Frankær; Pernille Sønderby; Maria Blanner Bang; Ramona Valentina Mateiu; Minna Groenning; Jens Thostrup Bukrinski; Pernille Harris
Protein amyloid fibrillation is obtaining much focus because it is connected with amyloid-related human diseases such as Alzheimers disease, diabetes mellitus type 2, or Parkinsons disease. The influence of metal ions on the fibrillation process and whether it is implemented in the amyloid fibrils has been debated for some years. We have therefore investigated the influence and binding geometry of zinc in fibrillated insulin using extended X-ray absorption fine-structure and X-ray absorption near-edge structure spectroscopy. The results were validated with fibre diffraction, Transmission Electron Microscopy and Thioflavin T fluorescence measurements. It is well-known that Zn2+ ions coordinate and stabilize the hexameric forms of insulin. However, this study is the first to show that zinc indeed binds to the insulin fibrils. Furthermore, zinc influences the kinetics and the morphology of the fibrils. It also shows that zinc coordinates to histidine residues in an environment, which is similar to the coordination seen in the insulin R6 hexamers, where three histidine residues and a chloride ion is coordinating the zinc.
Acta Crystallographica Section A | 2014
Pernille Sønderby; Günther H. Peters; Jens Thostrup Bukrinski; Pernille Harris
It is well-known that recombinant human serum albumin (rHSA) has the ability to stabilize proteins in solution preventing protein adsorption, aggregation and oxidation. For this reason, rHSA is used as an excipient in the formulation of protein pharmaceuticals. To shed light on the molecular interactions, we have studied a variety of protein drugs that are known to bind to rHSA and thereby being stabilized. We observe that the interactions depend on protein concentrations and differ significantly between protein drugs. One approach to study these systems on a molecular level is the combination of small angle X-ray scattering (SAXS) and in-silico modelling. SAXS can be used to identify the overall shape of proteins and protein complexes and ab initio models can be derived from the scattering profile using programs such as Dammif [1]. These programs allow us to assess the overall conformation of the macromolecular structures, but cannot provide detailed information on the molecular level regarding protein-protein interfaces of the complexes. Here, the Rosetta modelling suite, a multipurpose software suite, can be utilized to perform protein-protein docking and to study the complexes. The challenge in using the Rosetta docking tool [2] is the difficulties in efficiently identifying the nativelike structure. For better identification we apply SAXS constrains during the docking procedure. Although the method has been applied previously [3], no benchmarking has been published regarding the relative success of using SAXS constrains. We therefore have conducted an elaborate benchmarking, where we have used SAXS constrains for determination of complexes of non-identical components using the Rosetta docking protocol. A pool of complex structures has been chosen to evaluate the difference between conventional docking and docking performed using SAXS constrains. This allows us to optimize the parameters in the protocol and pave the way to study unknown complex structures.
Journal of Drug Delivery Science and Technology | 2016
Stefania Baldursdottir; Mariam Tauhaybeche; Jari Pajander; Jens Thostrup Bukrinski; Lene Jorgensen
Annual meeting of the Swedish Chemical Society 'Theoretical Chemistry Section 2015': Baltic Lights | 2015
Tine Maja Frederiksen; Pernille Harris; Jens Thostrup Bukrinski; Günther H. Peters
Acta Crystallographica Section A | 2014
Christian Grundahl Frankær; Maria Blanner; Minna Groenning; Jens Thostrup Bukrinski; Pernille Harris