Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Uhlig is active.

Publication


Featured researches published by Jens Uhlig.


Nature Communications | 2014

Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

Jan Kern; Rosalie Tran; Roberto Alonso-Mori; Sergey Koroidov; Nathaniel Echols; Johan Hattne; Mohamed Ibrahim; Sheraz Gul; Hartawan Laksmono; Raymond G. Sierra; Richard J. Gildea; Guangye Han; Julia Hellmich; Benedikt Lassalle-Kaiser; Ruchira Chatterjee; Aaron S. Brewster; Claudiu A. Stan; Carina Glöckner; Alyssa Lampe; Dörte DiFiore; Despina Milathianaki; Alan Fry; M. Marvin Seibert; Jason E. Koglin; Erik Gallo; Jens Uhlig; Dimosthenis Sokaras; Tsu-Chien Weng; Petrus H. Zwart; David E. Skinner

The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.


Journal of Physical Chemistry A | 2012

Guest–host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: Solvation dynamics and photoinduced spin transition in aqueous Fe(bipy)3 2+

Kristoffer Haldrup; György Vankó; Wojciech Gawelda; Andreas Galler; Gilles Doumy; Anne Marie March; E. P. Kanter; Amélie Bordage; Asmus Ougaard Dohn; T. B. van Driel; Kasper S. Kjaer; Henrik T. Lemke; Sophie E. Canton; Jens Uhlig; Villy Sundström; Linda Young; Stephen H. Southworth; Martin Meedom Nielsen; Christian Bressler

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.


Nature Chemistry | 2015

Iron sensitizer converts light to electrons with 92% yield

Tobias Harlang; Yizhu Liu; Olga Gordivska; Lisa A. Fredin; Carlito S. Ponseca; Ping Huang; Pavel Chábera; Kasper Skov Kjær; Helena Mateos; Jens Uhlig; Reiner Lomoth; Reine Wallenberg; Stenbjörn Styring; Petter Persson; Villy Sundström; Kenneth Wärnmark

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron-nitrogen-heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the (3)MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.


Nature Communications | 2015

Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses.

Sophie E. Canton; Kasper Skov Kjær; György Vankó; Tim Brandt van Driel; Shin-ichi Adachi; Amélie Bordage; Christian Bressler; Pavel Chabera; Morten Christensen; Asmus Ougaard Dohn; Andreas Galler; Wojciech Gawelda; David J. Gosztola; Kristoffer Haldrup; Tobias Harlang; Yizhu Liu; Klaus B. Møller; Zoltán Németh; Shunsuke Nozawa; Mátyás Pápai; Tokushi Sato; Takahiro Sato; Karina Suarez-Alcantara; Tadashi Togashi; Kensuke Tono; Jens Uhlig; Dimali A. Vithanage; Kenneth Wärnmark; Makina Yabashi; Jianxin Zhang

Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.


Angewandte Chemie | 2015

Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light

Michael G. Pfeffer; Bernhard Schäfer; Grigory Smolentsev; Jens Uhlig; Elena Nazarenko; Julien Guthmuller; Christian Kuhnt; Maria Wächtler; Benjamin Dietzek; Villy Sundström; Sven Rau

To develop highly efficient molecular photocatalysts for visible light-driven hydrogen production, a thorough understanding of the photophysical and chemical processes in the photocatalyst is of vital importance. In this context, in situ X-ray absorption spectroscopic (XAS) investigations show that the nature of the catalytically active metal center in a (N^N)MCl2 (M=Pd or Pt) coordination sphere has a significant impact on the mechanism of the hydrogen formation. Pd as the catalytic center showed a substantially altered chemical environment and a formation of metal colloids during catalysis, whereas no changes of the coordination sphere were observed for Pt as catalytic center. The high stability of the Pt center was confirmed by chloride addition and mercury poisoning experiments. Thus, for Pt a fundamentally different catalytic mechanism without the involvement of colloids is confirmed.


Nature | 2017

A low-spin Fe( iii ) complex with 100-ps ligand-to-metal charge transfer photoluminescence

Pavel Chabera; Yizhu Liu; Om Prakash; Erling Thyrhaug; Amal El Nahhas; Alireza Honarfar; Sofia Essén; Lisa A. Fredin; Tobias Harlang; Kasper Skov Kjær; Karsten Handrup; Fredric Ericson; Hideyuki Tatsuno; Kelsey M. Morgan; Joachim Schnadt; Lennart Häggström; Tore Ericsson; Adam Sobkowiak; Sven Lidin; Ping Huang; Stenbjörn Styring; Jens Uhlig; Jesper Bendix; Reiner Lomoth; Villy Sundström; Petter Persson; Kenneth Wärnmark

Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.


Journal of Physical Chemistry Letters | 2013

Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts

Sophie E. Canton; Xiaoyi Zhang; Jianxin Zhang; Tim Brandt van Driel; Kasper S. Kjaer; Kristoffer Haldrup; Pavel Chabera; Tobias Harlang; Karina Suarez-Alcantara; Yizhu Liu; Jorge Perez; Amélie Bordage; Mátyás Pápai; Gyoergy Vanko; G. Jennings; Charles Kurtz; Mauro Rovezzi; Pieter Glatzel; Grigory Smolentsev; Jens Uhlig; Asmus Ougaard Dohn; Morten Christensen; Andreas Galler; Wojciech Gawelda; Christian Bressler; Henrik T. Lemke; Klaus Braagaard Møller; Martin Meedom Nielsen; Reiner Lomoth; Kenneth Wärnmark

Building a detailed understanding of the structure-function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 ± 0.03 Å. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices.


Journal of Physical Chemistry C | 2015

Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)(2)](2+)

György Vankó; Amélie Bordage; Mátyás Pápai; Kristoffer Haldrup; Pieter Glatzel; Anne Marie March; Gilles Doumy; Alexander Britz; Andreas Galler; Tadesse Assefa; Delphine Cabaret; Amélie Juhin; Tim Brandt van Driel; Kasper Skov Kjær; Asmus Ougaard Dohn; Klaus B. Møller; Henrik T. Lemke; Erik Gallo; Mauro Rovezzi; Zoltán Németh; Emese Rozsályi; Tamás Rozgonyi; Jens Uhlig; Villy Sundström; Martin Meedom Nielsen; Linda Young; Stephen H. Southworth; Christian Bressler; Wojciech Gawelda

Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe–ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)–high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.


Chemical Reviews | 2017

Ultrafast Electron Dynamics in Solar Energy Conversion

Carlito S. Ponseca; Pavel Chábera; Jens Uhlig; Petter Persson; Villy Sundström

Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.


Journal of Physical Chemistry B | 2016

Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

Kristoffer Haldrup; Wojciech Gawelda; Rafael Abela; Roberto Alonso-Mori; Uwe Bergmann; Amélie Bordage; Marco Cammarata; Sophie E. Canton; Asmus Ougaard Dohn; Tim Brandt van Driel; David M. Fritz; Andreas Galler; Pieter Glatzel; Tobias Harlang; Kasper Skov Kjær; Henrik T. Lemke; Klaus B. Møller; Zoltán Németh; Mátyás Pápai; Norbert Sas; Jens Uhlig; Diling Zhu; György Vankó; Villy Sundström; Martin Meedom Nielsen; Christian Bressler

In liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ∼1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant.

Collaboration


Dive into the Jens Uhlig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Fowler

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Joel N. Ullom

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

W. B. Doriese

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Kristoffer Haldrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Carl D. Reintsema

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

D. A. Bennett

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Swetz

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge