Jens Voigt
German National Metrology Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Voigt.
Applied Physics Letters | 2010
Martin Burghoff; Hans-Helge Albrecht; Stefan Hartwig; Ingo Hilschenz; Rainer Körber; Nora Höfner; Hans-Jürgen Scheer; Jens Voigt; Lutz Trahms; Gabriel Curio
We describe a nuclear magnetic resonance (NMR) spectrometer operating at 20 μT with a frequency resolution of 2 mHz to determine the intrinsic linewidth of the proton resonance in the human brain to be about 3 Hz. Using the same system we measured a biomagnetic field of 0.5 to 1 pT amplitude, which was generated by sustained brain activity evoked during repetitive median nerve stimulation. From these data, the effect of neuronal currents on the proton NMR signal was estimated. We conclude that neuronal currents may cause a measurable shift of the proton NMR line of brain tissue in low-fields.
Journal of Chemical Physics | 2011
Stefan Hartwig; Jens Voigt; Hans-Jürgen Scheer; Hans-Helge Albrecht; Martin Burghoff; Lutz Trahms
In this study, we revisited nuclear magnetic relaxation of (1)H in water at very low Larmor frequencies that has been studied intensively in earlier years. We make use of the recently developed superconducting quantum interference device based ultra-low field NMR technique, which enables much easier access to the longitudinal spin-lattice relaxation time T(1) and the transversal spin-spin relaxation time T(2) below several kHz than traditional field cycling methods. Our data reproduce and complement the earlier results, in that they corroborate the finding of an exchange process with a correlation time of about 0.34 ms at room temperature which can be attributed to the migration of hydronium and hydroxyl ions in neutral water via hydrogen bridges. The corresponding relaxation process is driven by the interaction of the protons with (17)O and contributes to the T(1) and the T(2) relaxation rate by about 0.12 s(-1). In addition, we found evidence of a very slow exchange process at about 100 Hz that has hitherto not been reported.
Magnetic Resonance Imaging | 2011
Nora Höfner; Hans-Helge Albrecht; Antonino Mario Cassará; Gabriel Curio; Stefan Hartwig; Jens Haueisen; Ingo Hilschenz; Rainer Körber; Sven Martens; Hans-Jürgen Scheer; Jens Voigt; Lutz Trahms; Martin Burghoff
A number of different methods have been developed in order to detect the spreading of neuronal currents by means of noninvasive imaging techniques. However, all of these are subjected to limitations in the temporal or spatial resolution. A new approach of neuronal current detection is based on the use of low-field nuclear magnetic resonance (LF-NMR) that records brain activity directly. In the following, we describe a phantom study in order to assess the feasibility of neuronal current detection using LF-NMR. In addition to that, necessary preliminary subject studies examining somatosensory evoked neuronal currents are presented. During the phantom study, the influences of two different neuronal time signals on (1)H-NMR signals were observed. The measurements were carried out by using a head phantom with an integrated current dipole to simulate neuronal activity. Two LF-NMR methods based on a DC and an AC (resonant) mechanism were utilized to study the feasibility of detecting both types of magnetic brain signals. Measurements were made inside an extremely magnetically shielded room by using a superconducting quantum interference device magnetometer system. The measurement principles were validated applying currents of higher intensity than those typical of the neuronal currents. Through stepwise reduction of the amplitude of the current dipole strength, the resolution limits of the two measuring procedures were found. The results indicate that it is necessary to improve the signal-to-noise ratio of the measurement system by at least a factor of 38 in order to detect typical human neuronal activity directly by means of LF-NMR. In addition to that, ways of achieving this factor are discussed.
Physics Letters B | 2014
S. Afach; C. A. Baker; G. Ban; Georg Bison; K. Bodek; M. Burghoff; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; P. Geltenbort; K. Green; M. G. D. van der Grinten; Zoran D. Grujić; P. Harris; W. Heil; V. Hélaine; R. Henneck; M. Horras; P. Iaydjiev; S.N. Ivanov; M. Kasprzak; Y. Kermaidic; K. Kirch; A. Knecht; H.-C. Koch; J. Krempel; M. Kuźniak; B. Lauss; T. Lefort
The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).
Journal of Applied Physics | 2014
S. Afach; Georg Bison; K. Bodek; F. Burri; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; Zoran D. Grujić; V. Hélaine; R. Henneck; M. Kasprzak; K. Kirch; H.-C. Koch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; M. Meier; O. Naviliat-Cuncic; F. M. Piegsa; G. Pignol; C. Plonka-Spehr; P. N. Prashanth; G. Quéméner; D. Rebreyend; S. Roccia; P. Schmidt-Wellenburg; A. Schnabel
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from
Physics Letters B | 2015
S. Afach; G. Ban; Georg Bison; K. Bodek; Martin Burghoff; M. Daum; M. Fertl; B. Franke; Zoran D. Grujić; V. Hélaine; M. Kasprzak; Y. Kermaidic; K. Kirch; Paul E. Knowles; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; O. Naviliat-Cuncic; F. M. Piegsa; G. Pignol; P. N. Prashanth; G. Quéméner; D. Rebreyend; D. Ries; S. Roccia
10^{-3}
Journal of Applied Physics | 2015
I. Altarev; M. Bales; D. Beck; Timothy E. Chupp; K. Fierlinger; P. Fierlinger; F. Kuchler; T. Lins; M. Marino; B. Niessen; G. Petzoldt; U. Schläpfer; A. Schnabel; Jaideep Singh; R. Stoepler; S. Stuiber; M. Sturm; B. Taubenheim; Jens Voigt
Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.
European Physical Journal D | 2015
H.-C. Koch; Georg Bison; Zoran D. Grujić; W. Heil; M. Kasprzak; Paul E. Knowles; A. Kraft; A. S. Pazgalev; A. Schnabel; Jens Voigt; Antoine Weis
We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg-199 atoms confined in the same volume. The measurement was performed in a similar to 1 mu T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants g(S)g(P). Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 10(-6) < lambda < 10(-4) m
Biomedizinische Technik | 2011
Rainer Körber; Gabriel Curio; Stefan Hartwig; Ingo Hilschenz; Nora Höfner; Hans-Jürgen Scheer; Lutz Trahms; Jens Voigt; Martin Burghoff
We present a magnetically shielded environment with a damping factor larger than 1 × 106 at the mHz frequency regime and an extremely low field and gradient over an extended volume. This extraordinary shielding performance represents an improvement of the state-of-the-art in the difficult regime of damping very low-frequency distortions by more than an order of magnitude. This technology enables a new generation of high-precision measurements in fundamental physics and metrology, including searches for new physics far beyond the reach of accelerator-based experiments. We discuss the technical realization of the shield with its improvements in design.
Review of Scientific Instruments | 2015
Jens Voigt; S. Knappe-Grüneberg; Dirk Gutkelch; Jens Haueisen; S. Neuber; A. Schnabel; Martin Burghoff
We report on the design and performance of a highly sensitive combined 3He/Cs magnetometer for the absolute measurement of magnetic fields. The magnetometer relies on the magnetometric detection of the free spin precession of nuclear spin polarized 3He gas by optically pumped cesium magnetometers. We plan to deploy this type of combined magnetometer in an experiment searching for a permanent electric dipole moment of ultracold neutrons at the Paul-Scherrer Institute (Switzerland). A prototype magnetometer was built at the University of Fribourg (Switzerland) and tested at Physikalisch-Technische Bundesanstalt (Berlin, Germany). We demonstrate that the combined magnetometer allows Cramér-Rao-limited field determinations with recording times in the range of, measurements above being limited by the stability of the applied magnetic field. With a recording time we were able to perform an absolute measurement of a magnetic field of ≈ with a standard uncertainty of, corresponding to ΔB/B < 6 ×10−8.Graphical abstract