Jens Wöhnert
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Wöhnert.
ChemBioChem | 2003
Boris Fürtig; Christian Richter; Jens Wöhnert; Harald Schwalbe
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base‐pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Nucleic Acids Research | 2006
Jonas Noeske; Janina Buck; Boris Fürtig; Hamid R. Nasiri; Harald Schwalbe; Jens Wöhnert
Riboswitches are highly structured elements in the 5′-untranslated regions (5′-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcription termination or abolish ribosome binding. The guanine riboswitch binds with high-specificity to guanine and hypoxanthine and is among the smallest riboswitches described so far. The X-ray-structure of its aptamer domain in complex with guanine/hypoxanthine reveals an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base pairing interactions. We analyzed the conformational transitions of the aptamer domain induced by binding of hypoxanthine using high-resolution NMR-spectroscopy in solution. We found that the long-range base pairing interactions are already present in the free RNA and preorganize its global fold. The ligand binding core region is lacking hydrogen bonding interactions and therefore likely to be unstructured in the absence of ligand. Mg2+-ions are not essential for ligand binding and do not change the structure of the RNA-ligand complex but stabilize the structure at elevated temperatures. We identified a mutant RNA where the long-range base pairing interactions are disrupted in the free form of the RNA but form upon ligand binding in an Mg2+-dependent fashion. The tertiary interaction motif is stable outside the riboswitch context.
Nucleic Acids Research | 2007
Jonas Noeske; Harald Schwalbe; Jens Wöhnert
Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of this domain in complex with adenine revealed an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base-pairing interactions and identified five binding sites for hexahydrated Mg2+-ions. Furthermore, a role for Mg2+-ions in the ligand-induced folding of this RNA was suggested. Here, we describe the interaction of divalent cations with the RNA–adenine complex in solution as studied by high-resolution NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping and intermolecular nuclear Overhauser effects (NOEs) indicate the presence of at least three binding sites for divalent cations. Two of them are similar to those in the X-ray structure. The third site, which is important for the folding of this RNA, has not been observed previously. The ligand-free state of the RNA is conformationally heterogeneous and contains base-pairing patterns detrimental to ligand binding in the absence of Mg2+, but becomes partially pre-organized for ligand binding in the presence of Mg2+. Compared to the highly similar guanine-sensing riboswitch, the folding pathway for the adenine-sensing riboswitch aptamer domain is more complex and the influence of Mg2+ is more pronounced.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Janina Buck; Boris Fürtig; Jonas Noeske; Jens Wöhnert; Harald Schwalbe
Structural transitions of RNA between alternate conformations with similar stabilities are associated with important aspects of cellular function. Few techniques presently exist that are capable of monitoring such transitions and thereby provide insight into RNA dynamics and function at atomic resolution. Riboswitches are found in the 5′-UTR of mRNA and control gene expression through structural transitions after ligand recognition. A time-resolved NMR strategy was established in conjunction with laser-triggered release of the ligand from a photocaged derivative in situ to monitor the hypoxanthine-induced folding of the guanine-sensing riboswitch aptamer domain of the Bacillus subtilis xpt-pbuX operon at atomic resolution. Combining selective isotope labeling of the RNA with NMR filter techniques resulted in significant spectral resolution and allowed kinetic analysis of the buildup rates for individual nucleotides in real time. Three distinct kinetic steps associated with the ligand-induced folding were delineated. After initial complex encounter the ligand-binding pocket is formed and results in subsequent stabilization of a remote long-range loop–loop interaction. Incorporation of NMR data into experimentally restrained molecular dynamics simulations provided insight into the RNA structural ensembles involved during the conformational transition.
The EMBO Journal | 1999
Matthias Stoldt; Jens Wöhnert; Oliver Ohlenschläger; Matthias Görlach; Larry R. Brown
The structure of the complex between ribosomal protein L25 and a 37 nucleotide RNA molecule, which contains the E‐loop and helix IV regions of the E‐domain of Escherichia coli 5S rRNA, has been determined to an overall r.m.s. displacement of 1.08 Å (backbone heavy atoms) by heteronuclear NMR spectroscopy (Protein Databank code 1d6k). The interacting molecular surfaces are bipartite for both the RNA and the protein. One side of the six‐stranded β‐barrel of L25 recognizes the minor groove of the E‐loop with very little change in the conformations of either the protein or the RNA and with the RNA–protein interactions occurring mainly along one strand of the E‐loop duplex. This minor groove recognition module includes two parallel β‐strands of L25, a hitherto unknown RNA binding topology. Binding of the RNA also induces conversion of a flexible loop to an α‐helix in L25, the N‐terminal tip of which interacts with the widened major groove at the E‐loop/helix IV junction of the RNA. The structure of the complex reveals that the E‐domain RNA serves as a preformed docking partner, while the L25 protein has one preformed and one induced recognition module.
Angewandte Chemie | 2010
Elke Duchardt-Ferner; Julia E. Weigand; Oliver Ohlenschläger; Sina R. Schmidtke; Beatrix Suess; Jens Wöhnert
Riboswitches are highly structured RNA motifs with gene regulatory activity located in the untranslated regions of mRNAs. They either modulate transcription termination or translation initiation through conformational changes triggered by direct interactions with small metabolite ligands. Many naturally occurring riboswitches are large and structurally very complex. In contrast, synthetic riboswitches—tailored gene regulatory elements for synthetic biology applications—are based on small in vitro selected RNA aptamers. Yet, despite a ligand affinity and specificity comparable to their natural counterparts only a few in vitro selected aptamers are regulatory active in vivo. Recently, Suess et al. engineered a riboswitch for the aminoglycoside antibiotic neomycin B by subjecting an in vitro SELEX-pool to an in vivo screening for gene regulatory activity in a yeastbased reporter gene assay. The resulting neomycin B and ribostamycin (Figure 1a) responsive RNA-element (N1) contains only 27 nucleotides in a bulged hairpin secondary structure (Figure 1b)—the smallest riboswitch functional in vivo identified to date. In sequence and secondary structure, N1 differs completely from an in vitro selected but regulatory inactive RNA-aptamer for the same ligand (R23). Instead it partially resembles the ribosomal A-site, the natural target for aminoglycoside antibiotics (Figure 1b). The NMR spectroscopic analysis of the N1 riboswitch complexed with ribostamycin identifies structural determinants for its regulatory activity and suggests a ligand binding mechanism based on conformational capture. Our results provide insights into the modularity of ligand binding sites in RNA and highlight structural and dynamic features N1 shares with the larger naturally occurring riboswitches as well as with other regulatory active aptamers. This knowledge may guide the future design of novel synthetic riboswitches for targeted in vivo applications. Structure of the N1–ligand complex—the “OFF”-state of the riboswitch: N1 represses gene expression upon binding to either neomycin B or the closely related but smaller ribostamycin. NMR spectra of N1 bound to either ligand (Supporting Information Figure S1) indicate that both complexes are formed with similarly high affinity and display a high degree of structural similarity suggesting that the contribution of ring IV of neomycin to the interaction is negligible. Thus, we determined the structure of the N1–ribostamycin complex, because of its superior spectral resolution for the ligand resonances, by NMR spectroscopy (see Table 1). Chemical shift assignments and coordinates have been deposited (BMRB code: 16609, pdb-code: 2kxm). The structure of ribostamycin-bound N1 consists of a continuous helical stem with canonical stacking interactions between the G5:C23 and the G9:C22 base pair despite the presence of a flexible three-nucleotide bulge (C6–U8) and a compactly folded apical hexaloop organized around a U-turn motif (U14–A16) closed by the U13:U18 base pair (Figure 1c–e). Ribostamycin rings I and II are sandwiched between the N1 major groove, in the region from G5:C23 to U13:U18 and A17 protruding from the apical loop (Figure 2). Ring III is located close to the backbone of the 3’-strand (U18 to G20). Simultaneous contacts of the ligand with the G5:C23 base pair below and G9:C22 above the bulge (Figure 2b) clamp together the lower and upper helical stem and thus enforce the uninterrupted coaxial helical stacking across the flexible C6–U8 internal bulge. The bulge itself is not interacting with the ligand. A detailed structural description of the N1– ribostamycin complex is given in the Supporting Information. A comparison of the N1–ribostamycin complex with other aminoglycoside binding RNAs reveals partial similarities to known aminoglycoside binding sub-motifs: The helical stem centered at the U10:U21 base pair is similar to the ribosomal [*] Dr. E. Duchardt-Ferner, S. R. Schmidtke, Prof. Dr. J. W hnert Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt Max-von-Laue-Strasse 9, 60438 Frankfurt (Germany) Fax: (+49)69-798-29527 E-mail: [email protected]
Nucleic Acids Research | 2011
Britta Meyer; Jan Philip Wurm; Peter Kötter; Matthias S. Leisegang; Valeska Schilling; Markus Buchhaupt; Martin Held; Ute Bahr; Michael Karas; Alexander Heckel; Markus T. Bohnsack; Jens Wöhnert; Karl-Dieter Entian
The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen–Conradi syndrome (BCS) is caused by a specific Nep1D86G mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific 14C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1ts mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.
The EMBO Journal | 1998
Matthias Stoldt; Jens Wöhnert; Matthias Görlach; Larry R. Brown
The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 ± 0.14 Å by multi‐dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA‐binding proteins consisting of a six‐stranded β‐barrel and two α‐helices. A putative RNA‐binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E‐loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six‐stranded β‐barrels of L25 and of the tRNA anticodon‐binding domain of glutaminyl‐tRNA synthetase are similar.
Nucleic Acids Research | 2009
Alessandra Villa; Jens Wöhnert; Gerhard Stock
Riboswitches are a novel class of genetic control elements that function through the direct interaction of small metabolite molecules with structured RNA elements. The ligand is bound with high specificity and affinity to its RNA target and induces conformational changes of the RNAs secondary and tertiary structure upon binding. To elucidate the molecular basis of the remarkable ligand selectivity and affinity of one of these riboswitches, extensive all-atom molecular dynamics simulations in explicit solvent (≈1 μs total simulation length) of the aptamer domain of the guanine sensing riboswitch are performed. The conformational dynamics is studied when the system is bound to its cognate ligand guanine as well as bound to the non-cognate ligand adenine and in its free form. The simulations indicate that residue U51 in the aptamer domain functions as a general docking platform for purine bases, whereas the interactions between C74 and the ligand are crucial for ligand selectivity. These findings either suggest a two-step ligand recognition process, including a general purine binding step and a subsequent selection of the cognate ligand, or hint at different initial interactions of cognate and noncognate ligands with residues of the ligand binding pocket. To explore possible pathways of complex dissociation, various nonequilibrium simulations are performed which account for the first steps of ligand unbinding. The results delineate the minimal set of conformational changes needed for ligand release, suggest two possible pathways for the dissociation reaction, and underline the importance of long-range tertiary contacts for locking the ligand in the complex.
Nucleic Acids Research | 2010
Jan Philip Wurm; Britta Meyer; Ute Bahr; Martin Held; Olga Frolow; Peter Kötter; Joachim W. Engels; Alexander Heckel; Michael Karas; Karl-Dieter Entian; Jens Wöhnert
Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen–Conradi syndrome—a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910–921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Ψ) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Ψ in eukaryotic 18S rRNAs.