Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong Beom Kim is active.

Publication


Featured researches published by Jeong Beom Kim.


Nature | 2008

Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors

Jeong Beom Kim; Holm Zaehres; Guangming Wu; Luca Gentile; Kinarm Ko; Vittorio Sebastiano; Marcos J. Araúzo-Bravo; David Ruau; Dong Wook Han; Martin Zenke; Hans R. Schöler

Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc and Klf4 (refs 1–11). Considering that ectopic expression of c-Myc causes tumorigenicity in offspring and that retroviruses themselves can cause insertional mutagenesis, the generation of iPS cells with a minimal number of factors may hasten the clinical application of this approach. Here we show that adult mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than embryonic stem cells, and that exogenous Oct4 together with either Klf4 or c-Myc is sufficient to generate iPS cells from neural stem cells. These two-factor iPS cells are similar to embryonic stem cells at the molecular level, contribute to development of the germ line, and form chimaeras. We propose that, in inducing pluripotency, the number of reprogramming factors can be reduced when using somatic cells that endogenously express appropriate levels of complementing factors.


Cell | 2009

OCT4-INDUCED PLURIPOTENCY IN ADULT NEURAL STEM CELLS

Jeong Beom Kim; Vittorio Sebastiano; Guangming Wu; Marcos J. Araúzo-Bravo; Philipp Sasse; Luca Gentile; Kinarm Ko; David Ruau; Mathias Ehrich; Dirk van den Boom; Johann Meyer; Karin Hübner; Christof Bernemann; Claudia Ortmeier; Martin Zenke; Bernd K. Fleischmann; Holm Zaehres; Hans R. Schöler

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Nature | 2009

Direct reprogramming of human neural stem cells by OCT4

Jeong Beom Kim; Boris Greber; Marcos J. Araúzo-Bravo; Johann Meyer; Kook In Park; Holm Zaehres; Hans R. Schöler

Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells.


Molecular & Cellular Proteomics | 2008

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins

Johannes Graumann; Nina C. Hubner; Jeong Beom Kim; Kinarm Ko; Markus Moser; Chanchal Kumar; Jürgen Cox; Hans R. Schöler; Matthias Mann

Embryonic stem (ES) cells are pluripotent cells isolated from mammalian preimplantation embryos. They are capable of differentiating into all cell types and therefore hold great promise in regenerative medicine. Here we show that murine ES cells can be fully SILAC (stable isotope labeling by amino acids in cell culture)-labeled when grown feeder-free during the last phase of cell culture. We fractionated the SILAC-labeled ES cell proteome by one-dimensional gel electrophoresis and by isoelectric focusing of peptides. High resolution analysis on a linear ion trap-orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 5,000 distinct proteins. This is the largest quantified proteome reported to date and contains prominent stem cell markers such as OCT4, NANOG, SOX2, and UTF1 along with the embryonic form of RAS (ERAS). We also quantified the proportion of the ES cell proteome present in cytosolic, nucleoplasmic, and membrane/chromatin fractions. We compared two different preparation approaches, cell fractionation followed by one-dimensional gel separation and in-solution digestion of total cell lysate combined with isoelectric focusing, and found comparable proteome coverage with no apparent bias for any functional protein classes for either approach. Bioinformatics analysis of the ES cell proteome revealed a broad distribution of cellular functions with overrepresentation of proteins involved in proliferation. We compared the proteome with a recently published map of chromatin states of promoters in ES cells and found excellent correlation between protein expression and the presence of active and repressive chromatin marks.


Cell Stem Cell | 2009

Induction of Pluripotency in Adult Unipotent Germline Stem Cells

Kinarm Ko; Natalia Tapia; Guangming Wu; Jeong Beom Kim; Marcos Jesus Arauzo Bravo; Philipp Sasse; Tamara Glaser; David Ruau; Dong Wook Han; Boris Greber; Kirsten Hausdörfer; Vittorio Sebastiano; Martin Stehling; Bernd K. Fleischmann; Oliver Brüstle; Martin Zenke; Hans R. Schöler

Mouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses, gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.


Biomaterials | 2012

Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering

Kisuk Yang; Jung Seung Lee; Yu Bin Lee; Heungsoo Shin; Soong Ho Um; Jeong Beom Kim; Kook In Park; Haeshin Lee; Seung Woo Cho

Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.


Journal of Biological Chemistry | 2010

Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules.

Hongyan Zhou; Wenlin Li; Saiyong Zhu; Jin Young Joo; Jeong Tae Do; Wen Xiong; Jeong Beom Kim; Kang Zhang; Hans R. Schöler; Sheng Ding

Epiblast stem cells (EpiSCs) are pluripotent cells derived from post-implantation late epiblasts in vitro. EpiSCs are incapable of contributing to chimerism, indicating that EpiSCs are less pluripotent and represent a later developmental pluripotency state compared with inner cell mass stage murine embryonic stem cells (mESCs). Using a chemical approach, we found that blockage of the TGFβ pathway or inhibition of histone demethylase LSD1 with small molecule inhibitors induced dramatic morphological changes in EpiSCs toward mESC phenotypes with simultaneous activation of inner cell mass-specific gene expression. However, full conversion of EpiSCs to the mESC-like state with chimerism competence could be readily generated only with the combination of LSD1, ALK5, MEK, FGFR, and GSK3 inhibitors. Our results demonstrate that appropriate synergy of epigenetic and signaling modulations could convert cells at the later developmental pluripotency state to the earlier mESC-like pluripotency state, providing new insights into pluripotency regulation.


Nature Protocols | 2009

Generation of induced pluripotent stem cells from neural stem cells.

Jeong Beom Kim; Holm Zaehres; Marcos J. Araúzo-Bravo; Hans R. Schöler

The generation of induced pluripotent stem (iPS) cells from mouse and human somatic cells by expression of defined transcription factors (Oct4, Sox2, c-Myc, Klf4, Nanog and Lin28) is a powerful tool for conducting basic research and investigating the potential of these cells for replacement therapies. In our laboratory, iPS cells have been generated from adult mouse neural stem cells (NSCs) by ectopic expression of either Oct4 alone (one factor; 1F) or Oct4 plus Klf4 (two factors; 2F). Successful reprogramming of mouse NSCs by 1F or 2F depends on endogenous expression of Sox2, Klf4 and c-Myc. Direct reprogramming of somatic stem cells to 1F or 2F iPS cells avoids expression of the oncogenes Klf4 and c-Myc and, hence, the development of tumors in chimeras and offspring derived from these cells. Here we present a detailed protocol for the derivation of NSCs from adult mouse brain (which takes 4 weeks), and generation of 1F (4–5 weeks) or 2F iPS cells (2–3 weeks) from adult mouse NSCs.


Stroke | 2011

Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair Mechanisms After Photothrombotic Stroke

Jens Minnerup; Jeong Beom Kim; Antje Schmidt; Kai Diederich; Henrike Bauer; Matthias Schilling; Jan-Kolja Strecker; E. Bernd Ringelstein; Clemens Sommer; Hans R. Schöler; Wolf-Rüdiger Schäbitz

Background and Purpose— Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. Methods— Twenty-four hours after photothrombotic ischemia, adult rats received either 5 million NPC or placebo intravenously. Behavioral tests were performed weekly up to 4 weeks after ischemia. Endogenous neurogenesis, dendritic length, and dendritic branching of cortical pyramid cells and microglial activation were quantified. Results— NPC treatment led to a significantly improved sensorimotor function measured by the adhesive removal test. The dendritic length and the amount of branch points were significantly increased after NPC transplantation, whereas endogenous neurogenesis was decreased compared to placebo therapy. Decreased endogenous neurogenesis was associated with an increased number of activated microglial cells. Conclusions— Our findings suggest that an increased dendritic plasticity might be the structural basis of NPC-induced functional recovery. The decreased endogenous neurogenesis after NPC treatment seems to be mediated by microglial activation.


Experimental Hematology | 2010

Induction of pluripotency in human cord blood unrestricted somatic stem cells

Holm Zaehres; Gesine Kögler; Marcos J. Araúzo-Bravo; Martina Bleidissel; Simeon Santourlidis; Sandra Weinhold; Boris Greber; Jeong Beom Kim; Anja Buchheiser; Stefanie Liedtke; Hanna M. Eilken; Nina Graffmann; Xiaoyi Zhao; Johann Meyer; Peter Reinhardt; Boris Burr; Simon Waclawczyk; Claudia Ortmeier; Markus Uhrberg; Hans R. Schöler; Tobias Cantz; Peter Wernet

OBJECTIVE Generation of induced pluripotent stem (iPS) cells from human cord blood (CB)-derived unrestricted somatic stem cells and evaluation of their molecular signature and differentiation potential in comparison to human embryonic stem cells. MATERIALS AND METHODS Unrestricted somatic stem cells isolated from human CB were reprogrammed to iPS cells using retroviral expression of the transcription factors OCT4, SOX2, KLF4, and C-MYC. The reprogrammed cells were analyzed morphologically, by quantitative reverse transcription polymerase chain reaction, genome-wide microRNA and methylation profiling, and gene expression microarrays, as well as in their pluripotency potential by in vivo teratoma formation in severe combined immunodeficient mice and in vitro differentiation. RESULTS CB iPS cells are very similar to human embryonic stem cells morphologically, at their molecular signature, and in their differentiation potential. CONCLUSIONS Human CB-derived unrestricted somatic stem cells offer an attractive source of cells for generation of iPS cells. Our findings open novel perspectives to generate human leukocyte antigen-matched pluripotent stem cell banks based on existing CB banks. Besides the obvious relevance of a second-generation CB iPS cell bank for pharmacological and toxicological testing, its application for autologous or allogenic regenerative cell transplantation appears feasible.

Collaboration


Dive into the Jeong Beom Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Meyer

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soon-Yong Kwon

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge