Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong-Il Oh is active.

Publication


Featured researches published by Jeong-Il Oh.


Neurotoxicology | 2014

The neuroprotective effects of cordycepin inhibit glutamate-induced oxidative and ER stress-associated apoptosis in hippocampal HT22 cells

Mei Ling Jin; Sun Young Park; Young Hun Kim; Jeong-Il Oh; Sang-Joon Lee; Geun-Tae Park

Glutamate toxicity increases the formation of reactive oxygen species (ROS) and intracellular calcium levels, resulting in neuronal dysfunction, neurodegenerative disorders, and death. Cordycepin is a derivative of the nucleoside adenosine, and is believed to exert neuroprotective effects against glutamate-induced oxidative toxicity in HT22 neuronal cells. Excessive glutamate induces oxidative and endoplasmic reticulum (ER) stress, gradually increasing ER-related pro-apoptotic transcription factor C/EBP homologous protein (CHOP) expression, and eventually up-regulating expression of the pro-apoptotic factor Bax. Cordycepin inhibits CHOP and Bax expressions, as well as p-ERK, p-JNK, and p-p38, all of which are involved in oxidative or ER stress-induced apoptosis. In addition, the increased production of ROS from excessive glutamate leads to elevation of mitochondrial membrane potential (MMP), a hallmark of mitochondrial dysfunction. Cordycepin retains MMP and reduces the elevated levels of ROS and Ca(2+) induced by glutamate. Caspases are crucial mediators involved in mitochondrial apoptosis, and while glutamate disrupts mitochondrial function, it does not change expression levels of caspase 3 and caspase 9. Similarly, cordycepin has no effect on caspase 3 and caspase 9 expressions; however, it decreases the expression of ER stress-specific caspase 12, which plays a key role in the initiation of ER stress-induced apoptosis. Finally, we found that the anti-apoptotic effects of cordycepin are partially dependent on activation of the adenosine A1 receptor, whereas an antagonist selectively attenuated the neuroprotective effects of cordycepin. Collectively, these results suggest that cordycepin could be a potential future therapeutic agent for neuronal disorders.


Journal of Bacteriology | 2007

Dominant Role of the cbb3 Oxidase in Regulation of Photosynthesis Gene Expression through the PrrBA System in Rhodobacter sphaeroides 2.4.1

Yong-Jin Kim; In-Jeong Ko; Jin-Mok Lee; Ho Young Kang; Young Min Kim; Samuel Kaplan; Jeong-Il Oh

In this study, the H303A mutant form of the cbb(3) oxidase (H303A oxidase), which has the H303A mutation in its catalytic subunit (CcoN), was purified from Rhodobacter sphaeroides. The H303A oxidase showed the same catalytic activity as did the wild-type form of the oxidase (WT oxidase). The heme contents of the mutant and WT forms of the cbb(3) oxidase were also comparable. However, the puf and puc operons, which are under the control of the PrrBA two-component system, were shown to be derepressed aerobically in the R. sphaeroides strain expressing the H303A oxidase. Since the strain harboring the H303A oxidase exhibited the same cytochrome c oxidase activity as the stain harboring the WT oxidase did, the aerobic derepression of photosynthesis gene expression observed in the H303A mutant appears to be the result of a defective signaling function of the H303A oxidase rather than reflecting any redox changes in the ubiquinone/ubiquinol pool. It was also demonstrated that ubiquinone inhibits not only the autokinase activity of full-length PrrB but also that of the truncated form of PrrB lacking its transmembrane domain, including the proposed quinone binding sequence. These results imply that the suggested ubiquinone binding site within the PrrB transmembrane domain is not necessary for the inhibition of PrrB kinase activity by ubiquinone. Instead, it is probable that signaling through H303 of the CcoN subunit of the cbb(3) oxidase is part of the pathway through which the cbb(3) oxidase affects the relative kinase/phosphatase activity of the membrane-bound PrrB.


Journal of Bacteriology | 2008

O2- and NO-Sensing Mechanism through the DevSR Two-Component System in Mycobacterium smegmatis

Jin-Mok Lee; Ha Yeon Cho; Hyo Je Cho; In-Jeong Ko; Sae Woong Park; Hyung-Suk Baik; Jee-Hyun Oh; Chi-Yong Eom; Young Min Kim; Beom Sik Kang; Jeong-Il Oh

The DevS histidine kinase of Mycobacterium smegmatis contains tandem GAF domains (GAF-A and GAF-B) in its N-terminal sensory domain. The heme iron of DevS is in the ferrous state when purified and is resistant to autooxidation from a ferrous to a ferric state in the presence of O(2). The redox property of the heme and the results of sequence comparison analysis indicate that DevS of M. smegmatis is more closely related to DosT of Mycobacterium tuberculosis than DevS of M. tuberculosis. The binding of O(2) to the deoxyferrous heme led to a decrease in the autokinase activity of DevS, whereas NO binding did not. The regulation of DevS autokinase activity in response to O(2) and NO was not observed in the DevS derivatives lacking its heme, indicating that the ligand-binding state of the heme plays an important role in the regulation of DevS kinase activity. The redox state of the quinone/quinol pool of the respiratory electron transport chain appears not to be implicated in the regulation of DevS activity. Neither cyclic GMP (cGMP) nor cAMP affected DevS autokinase activity, excluding the possibility that the cyclic nucleotides serve as the effector molecules to modulate DevS kinase activity. The three-dimensional structure of the putative GAF-B domain revealed that it has a GAF folding structure without cyclic nucleotide binding capacity.


Journal of Bacteriology | 2010

Different Roles of DosS and DosT in the Hypoxic Adaptation of Mycobacteria

Min-Ju Kim; Kwang-Jin Park; In-Jeong Ko; Young-Min Kim; Jeong-Il Oh

The DosS (DevS) and DosT histidine kinases form a two-component system together with the DosR (DevR) response regulator in Mycobacterium tuberculosis. DosS and DosT, which have high sequence similarity to each other over the length of their amino acid sequences, contain two GAF domains (GAF-A and GAF-B) in their N-terminal sensory domains. Complementation tests in conjunction with phylogenetic analysis showed that DevS of Mycobacterium smegmatis is more closely related to DosT than DosS. We also demonstrated in vivo that DosS and DosT of M. tuberculosis play a differential role in hypoxic adaptation. DosT responds to a decrease in oxygen tension more sensitively and strongly than DosS, which might be attributable to their different autooxidation rates. The different responsiveness of DosS and DosT to hypoxia is due to the difference in their GAF-A domains accommodating the hemes. Multiple alignment analysis of the GAF-A domains of mycobacterial DosS (DosT) homologs and subsequent site-directed mutagenesis revealed that just one substitution of E87, D90, H97, L118, or T169 of DosS with the corresponding residue of DosT is sufficient to convert DosS to DosT with regard to the responsiveness to changes in oxygen tension.


Biochemical and Biophysical Research Communications | 2012

GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528.

Ji Young Cha; Dong Gwang Lee; Jun Seung Lee; Jeong-Il Oh; Hyung Suk Baik

A two-component system comprising GacS and GacA affects a large number of traits in many Gram-negative bacteria. However, the signals to which GacS responds, the regulation mechanism for GacA expression, and the genes GacA controls are not yet clear. In this study, several phenotypic tests and tobacco-leaf pathogenicity assays were conducted using a gacA deletion mutant strain (BL473) of Pseudomonas syringae pv. tabaci 11528. To determine the regulation mechanism for gacA gene expression and to identify GacA-regulated genes, we conducted quantitative RT-PCR and electrophoretic mobility shift assay (EMSA) experiments. The results indicated that virulence traits related to the pathogenesis of P. syringae pv. tabaci 11528 are regulated coordinately by GacA and iron availability. They also revealed that several systems coordinately regulate gacA gene expression in response to iron concentration and bacterial cell density and that GacA and iron together control the expression of several virulence genes. EMSA results provided genetic and molecular evidence for direct control of virulence genes by GacA.


Journal of Life Science | 2013

Development of New Vector Systems as Genetic Tools Applicable to Mycobacteria

Ji-A Jeong; Ha-Na Lee; In-Jeong Ko; Jeong-Il Oh

The genus Mycobacterium includes crucial animal and human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium bovis. Although it is important to understand the genetic basis for their virulence and persistence in host, genetic analysis in mycobacteria was hampered by a lack of sufficient genetic tools. Therefore, many functional vectors as molecular genetic tools have been designed for understanding mycobacterial biology, and the application of these tools to mycobacteria has accelerated the study of mechanisms involved in virulence and gene expression. To overcome the pre-existing problems in genetic manipulation of mycobacteria, this paper reports new vector systems as effective genetic tools in Mycobacterium smegmatis. Three vectors were developed; pKOTs is a suicide vector for mutagenesis containing a temperature-sensitive replication origin (TSRO) and the sacB gene encoding levansucrase as a counterselectable marker. pMV306lacZ is an integrative lacZ transcriptional fusion vector that can be inserted into chromosomal DNA by site-specific recombination. pTnMod-OKmTs is a minitransposon vector harboring the TSRO that can be used in random mutagenesis. It was demonstrated in this study that these vectors effectively worked in M. smegmatis. The vector systems reported here are expected to successfully applicable to future research of mycobacterial molecular genetics.


Microbiology | 2010

Cloning and expression analysis of the duplicated genes for carbon monoxide dehydrogenase of Mycobacterium sp. strain JC1 DSM 3803

Taeksun Song; Sae Woong Park; Su-Jeong Park; Ji Hyang Kim; Ji Young Yu; Jeong-Il Oh; Young Min Kim

Carbon monoxide dehydrogenase (CO-DH) is an enzyme catalysing the oxidation of CO to carbon dioxide in Mycobacterium sp. strain JC1 DSM 3803. Cloning of the genes encoding CO-DH from the bacterium and sequencing of overlapping clones revealed the presence of duplicated sets of genes for three subunits of the enzyme, cutB1C1A1 and cutB2C2A2, in operons, and a cluster of genes encoding proteins that may be involved in CO metabolism, including a possible transcriptional regulator. Phylogenetic analysis based on the amino acid sequences of large subunits of CO-DH suggested that the CO-DHs of Mycobacterium sp. JC1 and other mycobacteria are distinct from those of other types of bacteria. The growth phenotype of mutant strains lacking cutA genes and of a corresponding complemented strain showed that both of the duplicated sets of CO-DH genes were functional in this bacterium. Transcriptional fusions of the cutB genes with lacZ revealed that the cutBCA operons were expressed regardless of the presence of CO and were further inducible by CO. Primer extension analysis indicated two promoters, one expressed in the absence of CO and the other induced in the presence of CO. This is believed to be the first report to show the presence of multiple copies of CO-DH genes with identical sequences and in close proximity in carboxydobacteria, and to present the genetic evidence for the function of the genes in mycobacteria.


Journal of Bacteriology | 2010

Identification of trans- and cis-Control Elements Involved in Regulation of the Carbon Monoxide Dehydrogenase Genes in Mycobacterium sp. Strain JC1 DSM 3803

Jeong-Il Oh; Su-Jeong Park; Sun-Joo Shin; In-Jeong Ko; Seung Jin Han; Sae Woong Park; Taeksun Song; Young Min Kim

The cutR gene was identified 314 bp upstream of the divergently oriented cutB1C1A1 operon encoding carbon monoxide (CO) dehydrogenase in Mycobacterium sp. strain JC1. Its deduced product was composed of 320 amino acid residues with a calculated molecular mass of 34.1 kDa and exhibits a basal sequence similarity to the regulatory proteins belonging to the LysR family. Using a cutR deletion mutant, it was demonstrated that CutR is required for the efficient utilization of CO by Mycobacterium sp. strain JC1 growing with CO as the sole source of carbon and energy. CutR served as a transcriptional activator for expression of the duplicated cutBCA operons (cutB1C1A1 and cutB2C2A2) and was involved in the induction of the cutBCA operons by CO. The cutBCA operons were also subjected to catabolite repression. An inverted repeat sequence (TGTGA-N(6)-TCACA) with a perfect match with the binding motif of cyclic AMP receptor protein was identified immediately upstream of and overlapping with the translational start codons of cutB1 and cutB2. This palindrome sequence was shown to be involved in catabolite repression of the cutBCA operons. The transcription start point of cutR was determined to be the nucleotide G located 36 bp upstream of the start codon of cutR. Expression of cutR was higher in Mycobacterium sp. strain JC1 grown with glucose than that grown with CO.


Journal of Microbiology | 2012

Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv

Ha-Na Lee; Kwang-Eun Jung; In-Jeong Ko; Hyung Suk Baik; Jeong-Il Oh

Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a two-component system with the DosR RR, have different cross-interaction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.


PLOS ONE | 2014

Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis.

Ha-Na Lee; Na-On Lee; Seung Jin Han; In-Jeong Ko; Jeong-Il Oh

The ahpC (MSMEG_4891) gene encodes alkyl hydroperoxide reductase C in Mycobacterium smegmatis mc2155 and its expression is induced under oxidative stress conditions. Two well-defined inverted repeat sequences (IR1 and IR2) were identified in the upstream region of ahpC. Using a crp (cAMP receptor protein: MSMEG_6189) mutant and in vitro DNA-binding assay, it was demonstrated that the IR1 sequence serves as a Crp-binding site and that Crp functions as an activator in the regulation of ahpC expression. The expression level of ahpC was shown to be proportional to intracellular cAMP levels. Intracellular levels of cAMP were increased in M. smegmatis, when it was treated with oxidative stress inducers. The IR2 sequence is very similar to the known consensus sequence of FurA-binding sites and involved in the negative regulation of ahpC expression. Taken together, these results suggest that the induction of ahpC expression under oxidative stress conditions probably results from a combinatory effect of both inactivation of FurA by oxidative stress and activation of Crp in response to increased levels of cAMP.

Collaboration


Dive into the Jeong-Il Oh's collaboration.

Top Co-Authors

Avatar

In-Jeong Ko

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Ho Young Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Kaplan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ha-Na Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jin-Mok Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-A Jeong

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge