Jeong-In Baek
UPRRP College of Natural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeong-In Baek.
Orphanet Journal of Rare Diseases | 2012
Jeong-In Baek; Se-Kyung Oh; Dong-Bin Kim; Soo-Young Choi; Un-Kyung Kim; Kyu-Yup Lee; Sang-Heun Lee
BackgroundHereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over sixty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information.MethodsEighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss.ResultsFive mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families.ConclusionTargeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.
BMC Medical Genetics | 2013
Hae-Mi Woo; Hong-Joon Park; Jeong-In Baek; Mi-Hyun Park; Un-Kyung Kim; Borum Sagong; Soo Kyung Koo
BackgroundThe genetic heterogeneity of hearing loss makes genetic diagnosis expensive and time consuming using available methods. Whole-exome sequencing has recently been introduced as an alternative approach to identifying causative mutations in Mendelian disorders.MethodsTo identify the hidden mutations that cause autosomal recessive nonsyndromic hearing loss (ARNSHL), we performed whole-exome sequencing of 13 unrelated Korean small families with ARNSHL who were negative for GJB2 or SLC26A4 mutations.ResultsWe found two novel compound heterozygous mutations, IVS11 + 1 and p.R2146Q, of MYO15A in one (SR903 family) of the 13 families with ARNSHL. In addition to these causative mutations, 13 nonsynonymous variants, including variants with uncertain pathogenicity (SR285 family), were identified in the coding exons of MYO15A from Korean exomes.ConclusionThis is the first report of MYO15A mutations in an East Asian population. We suggest that close attention should be paid to this gene when performing genetic testing of patients with hearing loss in East Asia. The present results also indicate that whole-exome sequencing is a valuable method for comprehensive medical diagnosis of a genetically heterogeneous recessive disease, especially in small-sized families.
Journal of Human Genetics | 2010
Hong-Joon Park; Hyun-Ju Cho; Jeong-In Baek; Tamar Ben-Yosef; Tae-Jun Kwon; Andrew J. Griffith; Un-Kyung Kim
Mutations in the DFNA5 gene are known to cause autosomal dominant non-syndromic hearing loss (ADNSHL). To date, five DFNA5 mutations have been reported, all of which were different in the genomic level. In this study, we ascertained a Korean family with autosomal dominant, progressive and sensorineural hearing loss and performed linkage analysis that revealed linkage to the DFNA5 locus on chromosome 7. Sequence analysis of DFNA5 identified a 3-bp deletion in intron 7 (c.991-15_991-13del) as the cause of hearing loss in this family. As the same mutation had been reported in a large Chinese family segregating DFNA5 hearing loss, we compared their DFNA5 mutation-linked haplotype with that of the Korean family. We found a conserved haplotype, suggesting that the 3-bp deletion is derived from a single origin in these families. Our observation raises the possibility that this mutation may be a common cause of autosomal dominant progressive hearing loss in East Asians.
BMC Medical Genetics | 2008
Tae-Ho Kim; Jeong-In Baek; Jung Min Hong; Su-Jin Choi; Hye-Jin Lee; Hyun-Ju Cho; Eui Kyun Park; Un-Kyung Kim; Shin-Yoon Kim
BackgroundIt is known that steroid usage and alcohol abuse are major etiological factors in the development of avascular necrosis (AVN), a bone disease that produces osteonecrosis of the femoral head. The facilitation of fat biosynthesis by steroids and alcohol disrupts the blood supply into the femoral head. SREBP-2 plays a central role in the maintenance of lipid homeostasis through stimulating expression of genes associated with cholesterol biosynthetic pathways. The aim of this study was to examine the association between the polymorphisms of the SREBP-2 gene and AVN susceptibility in the Korean population.MethodsFour single nucleotide polymorphisms (SNP) in the SREBP-2 gene, IVS1+8408 T>C (rs2267439), IVS3-342 G>T (rs2269657), IVS11+414 G>A (rs1052717) and IVS12-1667 G>A (rs2267443), were selected from public databases and genotyped in 443 AVN patients and 273 control subjects by using single-based extension (SBE) genotyping.ResultsThe minor allele (C) frequency of rs2267439 showed a significant protective effect on AVN (P = 0.01, OR; 0.75, 95% CI; 0.604–0.935), and the genotype frequencies of this polymorphism were also different from the controls in all alternative analysis models (P range, 0.009–0.03, OR; 0.647–0.744). In contrast, rs1052717 and rs2267443 polymorphisms were significantly associated with AVN risk. Further analysis based on pathological etiology showed that the genotypes of rs2267439, rs1052717 and rs2267443 were also significantly associated with AVN susceptibility in each subgroup.ConclusionThis study is the first report to evaluate the association between SREBP-2 gene polymorphisms and the susceptibility of AVN in the Korean population.
Annals of Human Genetics | 2009
H.-J. Lee; Soo-Young Choi; Jung-Min Hong; Wan Lee; Jeong-In Baek; Somi Kim; Eun-Sil Park; Tae-Hoon Kim; Un-Kyung Kim
Reduction or disruption of the blood supply to the bone is involved in the pathogenesis of osteonecrosis of the femoral head (ONFH). An altered lipid metabolism is one of the major risk factors for ONFH. Sterol regulatory element binding protein, SREBF1 activates genes regulating lipid biosynthesis. The aim of this study was to examine the association between the polymorphisms of the SREBF1 gene and ONFH susceptibility in the Korean population. The SREBF1 gene in 24 unrelated Korean individuals was sequenced and two polymorphisms were detected. Two variants, IVS6 − 48 C > T and IVS7 + 117 A > G, were genotyped in 423 ONFH patients and 348 controls. The genotype frequency of IVS7 + 117 A > G in ONFH patients was significantly different from that of the control group with P value < 0.0001 (Adjusted OR; 6.88, 95% CI; 3.74‐12.67). Moreover, the IVS7 + 117 A > G genotype showed an association with men, and further analysis stratified by etiological factors indicated that the genotype data was significantly associated with a high risk for patients with alcohol‐induced ONFH (P < 0.0001). We found that the IVS7 + 117 A > G polymorphism of the SREBF1 gene is associated with an increased risk of ONFH in the Korean population.
PLOS ONE | 2013
Mee Hyun Song; Tae-Jun Kwon; Hui Ram Kim; Ju Hyun Jeon; Jeong-In Baek; Won-Sang Lee; Un-Kyung Kim; Jae Young Choi
Background Branchio-oto-renal (BOR) or branchio-otic (BO) syndrome is one of the most common forms of autosomal dominant syndromic hearing loss. Mutations in EYA1, SIX1 and SIX5 genes have been associated with BOR syndrome. In this study, clinical and genetic analyses were performed in patients with BOR/BO syndrome focusing on auditory manifestations and rehabilitation. Methods The audiologic manifestations were reviewed in 10 patients with BOR/BO syndrome. The operative findings and hearing outcome were analyzed in patients who underwent middle ear surgeries. The modality and outcome of auditory rehabilitation were evaluated. Genetic analysis was performed for EYA1, SIX1, and SIX5 genes. Results All patients presented with mixed hearing loss. Five patients underwent middle ear surgeries without successful hearing gain. Cochlear implantation performed in two patients resulted in significant hearing improvement. Genetic analysis revealed four novel EYA1 mutations and a large deletion encompassing the EYA1 gene. Conclusions Auditory rehabilitation in BOR/BO syndrome should be individually tailored keeping in mind the high failure rate after middle ear surgeries. Successful outcome can be expected with cochlear implantations in patients with BOR/BO syndrome who cannot benefit from hearing aids. The novel EYA1 mutations may add to the genotypic and phenotypic spectrum of BOR syndrome in the East Asian population.
Biochimica et Biophysica Acta | 2011
Jeong-In Baek; Hong-Joon Park; Kyungjoon Park; Su-Jin Choi; Kyu-Yup Lee; Jee Hyun Yi; Thomas B. Friedman; Dennis Drayna; Ki Soon Shin; Un-Kyung Kim
Hearing loss is a common communication disorder caused by various environmental and genetic factors. Hereditary hearing loss is very heterogeneous, and most of such cases involve sensorineural defects in the auditory pathway. There are currently 57 known autosomal dominant non-syndromic hearing loss (DFNA) loci, and the causative genes have been identified at 22 of these loci. In the present study, we performed a genome-wide linkage analysis in a Korean family segregating autosomal dominant hearing loss. We observed linkage on chromosome 1p34, and at this locus, we detected a novel mutation consisting of an 18 nucleotide deletion in exon 4 of the KCNQ4 gene, which encodes a voltage-gated potassium channel. We carried out a functional in vitro study to analyze the effects of this mutation (c.664_681del) along with two previously described KCNQ4 mutations, p.W276S and p.G285C. Although the c.664_681del mutation is located in the intercellular loop and the two previously described mutations, p.W276S and p.G285C, are located in the pore region, all mutants inhibit normal channel function by a dominant negative effect. Our analysis indicates that the intercellular loop is as significant as the pore region as a potential site of pathogenic effects on KCNQ4 channel function.
PLOS ONE | 2013
Borum Sagong; Jeong-In Baek; Se-Kyung Oh; Kyung Jin Na; Jae Woong Bae; Soo Young Choi; Ji Yun Jeong; Jae Young Choi; Sang-Heun Lee; Kyu-Yup Lee; Un-Kyung Kim
Hearing loss (HL) is a congenital disease with a high prevalence, and patients with hearing loss need early diagnosis for treatment and prevention. The GJB2, MT-RNR1, and SLC26A4 genes have been reported as common causative genes of hearing loss in the Korean population and some mutations of these genes are the most common mutations associated with hearing loss. Accordingly, we developed a method for the simultaneous detection of seven mutations (c.235delC of GJB2, c.439A>G, c.919-2A>G, c.1149+3A>G, c.1229C>T, c.2168A>G of SLC26A4, and m.1555A>G of the MT-RNR1 gene) using multiplex SNaPshot minisequencing to enable rapid diagnosis of hereditary hearing loss. This method was confirmed in patients with hearing loss and used for genetic diagnosis of controls with normal hearing and neonates. We found that 4.06% of individuals with normal hearing and 4.32% of neonates were heterozygous carriers. In addition, we detected that an individual is heterozygous for two different mutations of GJB2 and SLC26A4 gene, respectively and one normal hearing showing the heteroplasmy of m.1555A>G. These genotypes corresponded to those determined by direct sequencing. Overall, we successfully developed a robust and cost-effective diagnosis method that detects common causative mutations of hearing loss in the Korean population. This method will be possible to detect up to 40% causative mutations associated with prelingual HL in the Korean population and serve as a useful genetic technique for diagnosis of hearing loss for patients, carriers, neonates, and fetuses.
Gene | 2013
Jinwook Lee; Jeong-In Baek; Jae Young Choi; Un-Kyung Kim; Sang-Heun Lee; Kyu-Yup Lee
The TMPRSS3 gene (DFNB8/10), which encodes a transmembrane serine protease, is a common hearing loss gene in several populations. Accurate functions of TMPRSS3 in the hearing pathway are still unknown, but TMPRSS3 has been reported to play a crucial role in inner ear development or maintenance. To date, 16 pathogenic mutations have been identified in many countries, but no mutational studies of the TMPRSS3 gene have been conducted in the Korean hearing loss population. In this study, we performed genetic analysis of TMPRSS3 in 40 unrelated Korean patients with autosomal recessive hearing loss to identify the aspect and frequency of TMPRSS3 gene mutations in the Korean population. A total of 22 variations were detected, including a novel variant (p.V291L) and a previously reported pathogenic mutation (p.A306T). The p.A306T mutation which has been detected in only compound heterozygous state in previous studies was identified in homozygous state for the first time in this study. Moreover, the clinical evaluation identified bilateral dilated vestibules in the patient with p.A306T mutation, and it suggested that p.A306T mutation of the TMPRSS3 gene might be associated with vestibular anomalies. In conclusion, this study investigated that only 2.5% of patients with autosomal recessive hearing loss were related to TMPRSS3 mutations suggesting low prevalence of TMPRSS3 gene in Korean hearing loss population. Also, it will provide the information of genotype-phenotype correlation to understand definite role of TMPRSS3 in the auditory system.
Gene | 2013
Seung-Hyun Bae; Jeong-In Baek; Jong Dae Lee; Mee Hyun Song; Tae-Jun Kwon; Se-Kyung Oh; Ji Yun Jeong; Jae Young Choi; Kyu-Yup Lee; Un-Kyung Kim
Auditory neuropathy spectrum disorder (ANSD) is caused by dys-synchronous auditory neural response as a result of impairment of the functions of the auditory nerve or inner hair cells, or synapses between inner hair cells and the auditory nerve. To identify a causative gene causing ANSD in the Korean population, we conducted gene screening of the OTOF, DIAPH3, and PJVK genes in 19 unrelated Korean patients with ANSD. A novel nonsense mutation (p.Y1064X) and a known pathogenic mutation (p.R1939Q) of the OTOF gene were identified in a patient as compound heterozygote. Pedigree analysis for these mutations showed co-segregation of mutation genotype and the disease in the family, and it supported that the p.Y1064X might be a novel genetic cause of autosomal recessive ANSD. A novel missense variant p.K1017R (c.3050A>G) in the DIAPH3 gene was also identified in the heterozygous state. In contrast, no mutation was detected in the PJVK gene. These results indicate that no major causative gene has been reported to date in the Korean population and that pathogenic mutations in undiscovered candidate genes may have an effect on ANSD.