Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong-Myeong Ha is active.

Publication


Featured researches published by Jeong-Myeong Ha.


Accounts of Chemical Research | 2012

Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers.

Benjamin D. Hamilton; Jeong-Myeong Ha; Marc A. Hillmyer; Michael D. Ward

The phase behaviors of crystalline solids embedded within nanoporous matrices have been studied for decades. Classic nucleation theory conjectures that phase stability is determined by the balance between an unfavorable surface free energy and a stabilizing volume free energy. The size constraint imposed by nanometer-scale pores during crystallization results in large ratios of surface area to volume, which are reflected in crystal properties. For example, melting points and enthalpies of fusion of nanoscale crystals can differ drastically from their bulk scale counterparts. Moreover, confinement within nanoscale pores can dramatically influence crystallization pathways and crystal polymorphism, particularly when the pore dimensions are comparable to the critical size of an emerging nucleus. At this tipping point, the surface and volume free energies are in delicate balance and polymorph stability rankings may differ from bulk. Recent investigations have demonstrated that confined crystallization can be used to screen for and control polymorphism. In the food, pharmaceutical, explosive, and dye technological sectors, this understanding and control over polymorphism is critical both for function and for regulatory compliance. This Account reviews recent studies of the polymorphic and thermotropic properties of crystalline materials embedded in the nanometer-scale pores of porous glass powders and porous block-polymer-derived plastic monoliths. The embedded nanocrystals exhibit an array of phase behaviors, including the selective formation of metastable amorphous and crystalline phases, thermodynamic stabilization of normally metastable phases, size-dependent polymorphism, formation of new polymorphs, and shifts of thermotropic relationships between polymorphs. Size confinement also permits the measurement of thermotropic properties that cannot be measured in bulk materials using conventional methods. Well-aligned cylindrical pores of the polymer monoliths also allow determination and manipulation of nanocrystal orientation. In these systems, the constraints imposed by the pore walls result in a competition between crystal nuclei that favors those with the fastest growth direction aligned with the pore axis. Collectively, the examples described in this Account provide substantial insight into crystallization at a size scale that is difficult to realize by other means. Moreover, the behaviors resulting from nanoscopic confinement are remarkably consistent for a wide range of compounds, suggesting a reliable approach to studying the phase behaviors of compounds at the nanoscale. Newly emerging classes of porous materials promise expanded explorations of crystal growth under confinement and new routes to controlling crystallization outcomes.


Journal of the American Chemical Society | 2011

Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation

Isao Ogino; Michael M. Nigra; Son-Jong Hwang; Jeong-Myeong Ha; Thomas Rea; Stacey I. Zones; Alexander Katz

New material UCB-1 is synthesized via the delamination of zeolite precursor MCM-22 (P) at pH 9 using an aqueous solution of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride at 353 K. Characterization by powder X-ray diffraction, transmission electron microscopy, and nitrogen physisorption at 77 K indicates the same degree of delamination in UCB-1 as previously reported for delaminated zeolite precursors, which require a pH of greater than 13.5 and sonication in order to achieve exfoliation. UCB-1 consists of a high degree of structural integrity via (29)Si MAS NMR and Fourier transform infrared spectroscopies, and no detectable formation of amorphous silica phase via transmission electron microscopy. Porosimetry measurements demonstrate a lack of hysteresis in the N(2) adsorption/desorption isotherms and macroporosity in UCB-1. The new method is generalizable to a variety of Si:Al ratios and leads to delaminated zeolite precursor materials lacking amorphization.


Langmuir | 2009

Synthesis and Characterization of Accessible Metal Surfaces in Calixarene-Bound Gold Nanoparticles

Jeong-Myeong Ha; Andrew Solovyov; Alexander Katz

Use of organic ligands to partially passivate nanoparticles against sintering yet retain a degree of small molecule accessibility to the metal surface has been a lofty goal in functional materials synthesis, which in principle also enables the design of preferred electronic and steric environments on a nanoparticle surface. Catalysis using gold in particular requires donor ligands that facilitate an electron-rich metal surface and generalizable strategies for dealing with deactivation due to sintering. Here, synthesis and characterization of gold nanoparticles postsynthetically modified with the chelating ligand cone-5,11,17,23,29,35-hexa(tert-butyl)-37,39,41-tris(diphenylphosphinomethoxy)-38,40,42-trimethoxycalix[6]arene (1) is reported. In solution as well as when supported on the surface of TiO2, nanoparticles modified with tripodal calix[6]arene phosphine ligand 1 demonstrate enhanced protection against sintering relative to unmodified, tetraoctylammonium bromide-surfactant-stabilized gold nanoparticles. In between adsorbed calixarene ligands, there is accessible gold surface area in these nanoparticles, and this is measured quantitatively for the first time for a calixarene-modified nanoparticle, using a newly developed fluorescence methodology involving 2-naphthalenethiol as a relevant chemisorption probe molecule. Ligand steric bulk critically influences amount of accessible surface on the metal nanoparticle since the use of a smaller calix[4]arene ligand (MBC) results in a 7-fold lower accessible surface area relative to using 1 under otherwise similar conditions. In addition, surface coverage of 1 controls accessible surface area in an unintuitive fashion: a 4-fold increase in accessible metal surface area is observed upon increasing the surface coverage of 1 to be 1.5-fold higher than the minimum required for surface saturation. This is presumably the result of a more open ligand packing of 1 at higher surface coverages, which allows greater accessibility to 2-napthalenethiol.


Langmuir | 2009

Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance.

Jeong-Myeong Ha; Andrew Solovyov; Alexander Katz

Gold nanoparticles postsynthetically modified with chiral 1,3-disubstituted diamino calix[4]arene ligands 2a and 2b are shown to exhibit a circular dichroism (CD)-active surface plasmon resonance absorption (SPR) band. Electronic communication between adsorbed ligand and the gold nanoparticle surface is evidenced in an almost 10-fold increase in the ligand molar ellipticity in the pi-pi* transition spectral range when bound to the gold surface relative to free solution. The footprint of ligand on the gold nanoparticle surface at saturation is measured to be 91 A(2) via monitoring the red shift in the SPR band accompanying ligand adsorption. At ligand concentrations above that required for surface saturation, the ellipticity of the band in the SPR spectral range plateaus to a constant value, whereas the ellipticity of the band in the pi-pi* transition spectral range continues to increase in a manner that corresponds to free ligand in solution. This critical observation correlates ligand adsorption and the onset of the CD-active SPR band. On the basis of the packing characteristics of the bulky calixarene ligand, which are controlled by achiral tert-butyl groups, and the postsynthetic nature of nanoaprticle surface modification of 4.7 nm gold cores used in this study, which precludes synthesis of chiral arrangements of gold atoms, a mechanism responsible for the CD-active SPR bands is proposed, which is based upon the influence of the asymmetric center of the chiral adsorbate on the electronic states of the metal nanoparticle core-an explanation supported by the observed interactions between the gold surface and adsorbed ligand.


Bioresource Technology | 2014

Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass.

Yanuar Philip Wijaya; Robertus Dhimas Dhewangga Putra; Vania Tanda Widyaya; Jeong-Myeong Ha; Dong Jin Suh; Chang Soo Kim

Among all the feasible thermochemical conversion processes, concentrated acid hydrolysis has been applied to break the crystalline structure of cellulose efficiently and scale up for mass production as lignocellulosic biomass fractionation process. Process conditions are optimized by investigating the effect of decrystallization sulfuric acid concentration (65-80 wt%), hydrolysis temperature (80°C and 100°C), hydrolysis reaction time (during two hours), and biomass species (oak wood, pine wood, and empty fruit bunch (EFB) of palm oil) toward sugar recovery. At the optimum process condition, 78-96% sugars out of theoretically extractable sugars have been fractionated by concentrated sulfuric acid hydrolysis of the three different biomass species with 87-90 g/L sugar concentration in the hydrolyzate and highest recalcitrance of pine (softwood) was determined by the correlation of crystallinity index and sugar yield considering reaction severity.


Bioresource Technology | 2016

Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals

Hong-shik Lee; Jungho Jae; Jeong-Myeong Ha; Dong Jin Suh

The hydro-/solvothermolysis of kraft lignin using water and ethanol as a solvent were investigated in this study. The effect of the water-to-ethanol ratio on the yields of monomeric aromatic chemicals (MACs) and the kinetic behavior of MACs was studied in a series of batch experiments. The yields of MACs other than catechol increased as the ratio of ethanol increased, and the content of the total MACs in bio-crude oil (BCO) reached 35% when the ratio of ethanol was 100% at a reaction temperature of 300 °C. The formation of phenol, guaiacol, and alkylguaiacols was enhanced in ethanol, while the formation of catechol was dominant in water. The formation of more substituted MACs such as vanillin, acetoguaiacone, and homovanillic acid was not affected by the solvent. The role of reaction parameters on the yields of MACs was elucidated, and the main reaction pathways in water and in ethanol were proposed.


Chemcatchem | 2015

Water-Assisted Selective Hydrodeoxygenation of Lignin-Derived Guaiacol to Monooxygenates

Ji Sun Yoon; Jae Wook Choi; Dong Jin Suh; Kangtaek Lee; Hyunjoo Lee; Jeong-Myeong Ha

Water, which frequently inhibits organic reactions, improves the hydrodeoxygenation activity of lignin‐derived guaiacol on a bifunctional catalyst of Rh/SiO2–Al2O3 in a biphasic mixture of n‐decane and water. The unique properties of subcritical water appear to promote hydrodeoxygenation, which improves the production of monooxygenates by removing more oxygen atoms of guaiacol while suppressing the formation of fully deoxygenated hydrocarbons because of the poor solubility of hydrophobic monooxygenates.


Cellulose | 2013

Effects of lignin on the ionic-liquid assisted catalytic hydrolysis of cellulose: chemical inhibition by lignin

Hwa Jeong Lee; Bernardi Sanyoto; Jae Wook Choi; Jeong-Myeong Ha; Dong Jin Suh; Kwan Young Lee

The production of cellulose-derived biofuels and biochemicals, such as bioalcohols and bioplastics, from lignocellulose requires the isolation of cellulose by lignin removal or delignification processes. While the remaining lignin and its phenolic fragments have been reported to inhibit the biological conversion of cellulose, we observed that the catalytic hydrolysis of cellulose also can be inhibited most likely because of an associative interaction between cellulose and lignin. The associative interaction between cellulose and the functional groups of lignin was proven by gel-permeation-chromatography measurement of regenerated mixtures of lignin and cellulose which simulate the lignocellulose-derived cellulose containing lignin as an impurity. Chemical bonds between cellulose and lignin were hypothesized using lignin model compounds containing known functionalities such as hydroxyl, methoxy, phenyl, allyl, and carboxyl groups in order to explain the effects of lignin on the hydrolysis of cellulose. The yield of glucose from cellulose dropped when carboxylic and hydroxyl groups were present possibly because of the formation of ether and ester bonds between the lignin and cellulose. These observations may help develop the chemical processes and therefore convert the inedible biomass resource of lignocellulose-based cellulose containing lignin and its derivatives to the valuable fuels and chemicals.


Bioresource Technology | 2017

Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media

Ivan Kristianto; Susan Olivia Limarta; Hyunjoo Lee; Jeong-Myeong Ha; Dong Jin Suh; Jungho Jae

Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system.


Green Chemistry | 2018

Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReOx/ZrO2 catalyst: zirconia and rhenium oxide as efficient dehydration promoters

Pouya Sirous-Rezaei; Jungho Jae; Jeong-Myeong Ha; Chang Hyun Ko; Ji Man Kim; Jong-Ki Jeon; Young-Kwon Park

Strong adsorption of phenolics on zeolite acid sites causes high trapping inside zeolite channels and low catalytic activity of zeolite-supported catalysts in atmospheric pressure hydrodeoxygenation (HDO) of lignin-derived phenolics. This adsorption is more severe at low temperatures, and restricts the atmospheric HDO of phenolics to high reaction temperatures. The purpose of this research was to develop a catalyst with low phenolic trapping potential and high HDO efficiency under mild reaction conditions. Among the tested catalysts (Fe/HBeta, FeReOx/HBeta, Fe/MCM-41, ReOx/MCM-41, FeReOx/MCM-41, Fe/ZrO2 and FeReOx/ZrO2), the novel catalyst of FeReOx/ZrO2 exhibited the highest catalytic efficiency for mild-condition (pressure: 1 atm and temperature <350 °C) HDO of phenolics (guaiacol, m-cresol and anisole), and led to the selective production of BTX aromatics. Compared to Fe/HBeta(38) as a zeolite-supported catalyst, FeReOx/ZrO2 displayed remarkably enhanced performance, and its catalytic activity for the HDO of m-cresol at 350 °C was almost twice higher than that of Fe/HBeta(38) at 500 °C. Importantly, FeReOx/ZrO2 revealed a high HDO efficiency (BTX yield of 50.5 wt% with phenolic trapping below 5 wt%) at a low temperature of 250 °C, while Fe/HBeta(38) almost lost its entire catalytic activity at this temperature, and gave a low BTX yield of 3.0 wt% with a high trapped phenolic yield of 83.1 wt%. The remarkable catalytic activity of FeReOx/ZrO2 in the HDO of phenolics at atmospheric pressure and temperatures as low as 250 °C is a result of its mesoporosity and oxophilicity as well as its well-balanced acidity induced by both rhenium oxide and zirconia support causing a high dehydration efficiency.

Collaboration


Dive into the Jeong-Myeong Ha's collaboration.

Top Co-Authors

Avatar

Dong Jin Suh

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jungho Jae

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae-Wook Choi

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Wook Choi

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyunjoo Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Adid Adep Dwiatmoko

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang Soo Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Sun Yoon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Young-Kwon Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge