Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong-Nam Park is active.

Publication


Featured researches published by Jeong-Nam Park.


Applied and Environmental Microbiology | 2007

Engineering of the Yeast Yarrowia lipolytica for the Production of Glycoproteins Lacking the Outer-Chain Mannose Residues of N-Glycans

Yunkyoung Song; Min Hee Choi; Jeong-Nam Park; Moo Woong Kim; Eun Jung Kim; Hyun Kang; Jeong-Yoon Kim

ABSTRACT In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative α-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro α-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with α-1,2- and α-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first α-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.


Applied and Environmental Microbiology | 2007

Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems.

Jeong-Nam Park; Min Jeong Sohn; Doo-Byoung Oh; Ohsuk Kwon; Sang Ki Rhee; Cheol-Goo Hur; Sang Yup Lee; Gerd Gellissen; Hyun Kang

ABSTRACT The genomewide gene expression profiling of the methylotrophic yeast Hansenula polymorpha exposed to cadmium (Cd) allowed us to identify novel genes responsive to Cd treatment. To select genes whose promoters can be useful for construction of a cellular Cd biosensor, we further analyzed a set of H. polymorpha genes that exhibited >6-fold induction upon treatment with 300 μM Cd for 2 h. The putative promoters, about 1,000-bp upstream fragments, of these genes were fused with the yeast-enhanced green fluorescence protein (GFP) gene. The resultant reporter cassettes were introduced into H. polymorpha to evaluate promoter strength and specificity. The promoter derived from the H. polymorpha SEO1 gene (HpSEO1) was shown to drive most strongly the expression of GFP upon Cd treatment among the tested promoters. The Cd-inducible activity was retained in the 500-bp deletion fragment of the HpSEO1 promoter but was abolished in the further truncated 250-bp fragment. The 500-bp HpSEO1 promoter directed specific expression of GFP upon exposure to Cd in a dose-dependent manner, with Cd detection ranging from 1 to 900 μM. Comparative analysis of the Saccharomyces cerevisiae SEO1 (ScSEO1) promoter revealed that the ScSEO1 promoter has a broader specificity for heavy metals and is responsive to arsenic and mercury in addition to Cd. Our data demonstrate the potential use of the HpSEO1 promoter as a bioelement in whole-cell biosensors to monitor heavy metal contamination, particularly Cd.


Applied and Environmental Microbiology | 2011

Essential Role of YlMPO1, a Novel Yarrowia lipolytica Homologue of Saccharomyces cerevisiae MNN4, in Mannosylphosphorylation of N- and O-Linked Glycans

Jeong-Nam Park; Yunkyoung Song; Seon Ah Cheon; Ohsuk Kwon; Doo-Byoung Oh; Yoshifumi Jigami; Jeong-Yoon Kim; Hyun Kang

ABSTRACT Mannosylphosphorylation of N- and O-glycans, which confers negative charges on the surfaces of cells, requires the functions of both MNN4 and MNN6 in Saccharomyces cerevisiae. To identify genes relevant to mannosylphosphorylation in the dimorphic yeast Yarrowia lipolytica, the molecular functions of five Y. lipolytica genes showing significant sequence homology with S. cerevisiae MNN4 and MNN6 were investigated. A set of mutant strains in which Y. lipolytica MNN4 and MNN6 homologues were deleted underwent glycan structure analysis. In contrast to S. cerevisiae MNN4 (ScMNN4), the Y. lipolytica MNN4 homologue, MPO1 (YlMPO1), encodes a protein that lacks the long KKKKEEEE repeat domain at its C terminus. Moreover, just a single disruption of YlMPO1 resulted in complete disappearance of the acidic sugar moiety in both the N- and O-linked glycan profiles. In contrast, even quadruple disruption of all ScMNN6 homologues, designated YlKTR1, YlKTR2, YlKTR3, and YlKTR4, resulted in no apparent reduction in acidic sugar moieties. These findings strongly indicate that YlMpo1p performs a significant role in mannosylphosphorylation in Y. lipolytica with no involvement of the Mnn6p homologues. Mutant strains harboring the YlMPO1 gene disruption may serve as useful platforms for engineering Y. lipolytica glycosylation pathways for humanized glycans without any yeast-specific acidic modifications.


Yeast | 2009

New selectable host–marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha

Seon Ah Cheon; Jinho Choo; Vera M. Ubiyvovk; Jeong-Nam Park; Moo Woong Kim; Doo-Byoung Oh; Ohsuk Kwon; Andriy A. Sibirny; Jeong-Yoon Kim; Hyun Kang

Interest has been increasing in the thermotolerant methylotrophic yeast Hansenula polymorpha as a useful system for fundamental research and applied purposes. Only a few genetic marker genes and auxotrophic hosts are yet available for this yeast. Here we isolated and developed H. polymorpha TRP1, MET2 and ADE2 genes as selectable markers for multiple genetic manipulations. The H. polymorpha TRP1 (HpTRP1), MET2 (HpMET2) and ADE2 (HpADE2) genes were sequentially disrupted, using an HpURA3 pop‐out cassette in H. polymorpha to generate a series of new multiple auxotrophic strains, including up to a quintuple auxotrophic strain. Unexpectedly, the HpTRP1 deletion mutants required additional tryptophan supplementation for their full growth, even on complex media such as YPD. Despite the clearly increased resistance to 5‐fluoroanthranilic acid of the HpTRP1 deletion mutants, the HpTRP1 blaster cassette does not appear to be usable as a counter‐selection marker in H. polymorpha. Expression vectors carrying HpADE2, HpTRP1 or HpMET2 with their own promoters and terminators as selectable markers were constructed and used to co‐transform the quintuple auxotrophic strain for the targeted expression of a heterologous gene, Aspergillus saitoi MsdS, at the ER, the Golgi and the cell surface, respectively. The nucleotide sequences presented here were submitted to GenBank under Accession Nos AY795576 (HpTRP1), FJ226453 (HpMET2) and FJ493241 (HpADE2), respectively. Copyright


Journal of Biotechnology | 2015

Increased mannosylphosphorylation of N-glycans by heterologous expression of YlMPO1 in glyco-engineered Saccharomyces cerevisiae for mannose-6-phosphate modification.

Jin Young Gil; Jeong-Nam Park; Kyung Jin Lee; Ji-Yeon Kang; Yeong Hun Kim; Seonghun Kim; Sang Yoon Kim; Ohsuk Kwon; Yong Taik Lim; Hyun Kang; Doo-Byoung Oh

Mannosylphosphorylated N-glycans found in yeasts can be converted to those containing mannose-6-phosphate, which is a key factor for lysosomal targeting. In the traditional yeast Saccharomyces cerevisiae, both ScMNN4 and ScMNN6 genes are required for efficient mannosylphosphorylation. ScMnn4 protein has been known to be a positive regulator of ScMnn6p, a real enzyme for mannosylphosphorylation. On the other hand, YlMpo1p, a ScMnn4p homologue, mediates mannosylphosphorylation in Yarrowia lypolytica without the involvement of ScMnn6p homologues. In this study, we show that heterologous expression of YlMpo1p can perform and enhance mannosylphosphorylation in S. cerevisiae in the absence of ScMnn4p and ScMnn6p. Moreover, the level of mannosylphosphorylation of N-glycans enhanced by YlMpo1p overexpression is much higher than that with ScMnn4p overexpression, and this is highlighted further in Scmnn4- and Scmnn6-disrupted mutants. When YlMpo1p overexpression is applied to glyco-engineered S. cerevisiae in which the synthesis of immunogenic glycans is abolished, a great increase of bi-mannosylphosphorylated glycan is observed. Through an in vitro process involving the uncapping of the outer mannose residue, this bi-mannosylphosphorylated structure is changed to a bi-phosphorylated structure with high affinity for mannose-6-phosphate receptor. The superior ability of YlMpo1p to increase bi-mannosylphosphorylated glycan in yeast shows promise for the production of therapeutic enzymes with improved lysosomal targeting capability.


Fungal Genetics and Biology | 2013

Functional and molecular characterization of novel Hansenula polymorpha genes, HpPMT5 and HpPMT6, encoding protein O-mannosyltransferases

Hyunah Kim; Hye Yun Moon; Dong-Jik Lee; Seon Ah Cheon; Su Jin Yoo; Jeong-Nam Park; Michael O. Agaphonov; Doo-Byoung Oh; Ohsuk Kwon; Hyun Kang

The genome of the thermotolerant methylotrophic yeast Hansenula polymorpha reveals the presence of five PMT homologues (HpPMT1, HpPMT2, HpPMT4, HpPMT5, and HpPMT6) encoding protein O-mannosyltransferases. Here, we report on the systematic characterization of HpPMT5 and HpPMT6, encoding novel PMT1 and PMT2 subfamily members, respectively. Although no apparent growth defects were detected in the Hppmt5Δ and Hppmt6Δ single mutants, the single mutants showed dramatic sensitivity to the Pmt1p inhibitor, and the Hppmt1pmt5Δ and Hppmt1pmt6Δ double mutants displayed increased susceptibility to cell wall-disturbing reagents. Activation of the cell wall integrity signaling pathway in the double mutant strains was further indicated by the markedly induced phosphorylation of MAP kinases, such as HpMpk1p and HpHog1p. Noticeably, O-mannosylation of the surface glycoproteins HpWsc1p and HpMid2p became severely defective only in the double mutants, supporting the involvement of HpPmt5p and HpPmt6p in O-mannosylation of these sensor proteins. On the other hand, co-immunoprecipitation experiments revealed only marginal interaction between HpPmt5p and HpPmt2p, even in the absence of HpPmt1p. Taken together, our results suggest that the functions of HpPmt5p and HpPmt6p are minor but become crucial upon the loss of HpPmt1p for protein O-mannosylation, which is essential for cell growth, cell wall integrity, and stress resistance in H. polymorpha.


Journal of Microbiology | 2014

Functional characterization of extracellular chitinase encoded by the YlCTS1 gene in a dimorphic yeast Yarrowia lipolytica

Jeong-Nam Park; Chang Pyo Han; Dong-Jik Lee; Seon Ah Cheon; Hyun Kang

The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.


Journal of Microbiology | 2011

Functional analysis of a Hansenula polymorpha MNN2-2 homologue encoding a putative UDP-N-acetylglucosamine transporter localized in the endoplasmic reticulum

Jeong-Nam Park; Jinho Choo; Hyun Kang

The Kluyveromyces lactis UDP-GlcNAc transporter (KlMnn2-2p) is responsible for the biosynthesis of N-glycans containing N-acetylglucosamine. A putative gene of Hansenula polymorpha encoding a KlMnn2-2p homologue, HpMNN2-2, was identified and investigated for its function. The deletion mutant strain of HpMNN2-2 (Hpmnn2-2Δ) showed increased sensitivity to geneticin, hygromycin B, and tunicamycin. However, the Hpmnn2-2Δ strain exhibited increased resistance to Calcofluor white, an inhibitor of chitin biosynthesis, along with a reduced chitin content. The localization of HpMnn2-2p at the endoplasmic reticulum-enriched membrane, different from the Golgi localization of a K. lactis homologue, further supports the involvement of HpMnn2-2p in cell wall chitin biosynthesis.


한국미생물학회 학술대회논문집 | 2013

Engineering of Glycosylation and Secretion Pathway in Yeast for Production of Therapeutic Enzymes

Doo-Byoung Oh; Jin Young Gil; Hoon Seo; Ohsuk Kwon; Jeong-Nam Park; Seon Ah Cheon; Hyun Ah Kang


Annual Symposium of BPERC '98 | 1998

Production of Bacteriorhodopsin by Halobacterium Halobium S9-P Using Various Nitrogen Sources

S.H Hong; Jeong-Nam Park; SangYup Lee; Ho Nam Chang

Collaboration


Dive into the Jeong-Nam Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ohsuk Kwon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Seon Ah Cheon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jeong-Yoon Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge