Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeonghee Cho is active.

Publication


Featured researches published by Jeonghee Cho.


Cell | 2012

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski; Alice H. Berger; Peter S. Hammerman; Bryan Hernandez; Trevor J. Pugh; Eran Hodis; Jeonghee Cho; James Suh; Marzia Capelletti; Andrey Sivachenko; Carrie Sougnez; Daniel Auclair; Michael S. Lawrence; Petar Stojanov; Kristian Cibulskis; Kyusam Choi; Luc de Waal; Tanaz Sharifnia; Angela N. Brooks; Heidi Greulich; Shantanu Banerji; Thomas Zander; Danila Seidel; Frauke Leenders; Sascha Ansén; Corinna Ludwig; Walburga Engel-Riedel; Erich Stoelben; Jürgen Wolf; Chandra Goparju

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Nature | 2007

Characterizing the cancer genome in lung adenocarcinoma

Barbara A. Weir; Michele S. Woo; Gad Getz; Sven Perner; Li Ding; Rameen Beroukhim; William M. Lin; Michael A. Province; Aldi T. Kraja; Laura A. Johnson; Kinjal Shah; Mitsuo Sato; Roman K. Thomas; Justine A. Barletta; Ingrid B. Borecki; Stephen Broderick; Andrew C. Chang; Derek Y. Chiang; Lucian R. Chirieac; Jeonghee Cho; Yoshitaka Fujii; Adi F. Gazdar; Thomas J. Giordano; Heidi Greulich; Megan Hanna; Bruce E. Johnson; Mark G. Kris; Alex E. Lash; Ling Lin; Neal I. Lindeman

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ∼12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Cancer Discovery | 2011

Mutations in the DDR2 Kinase Gene Identify a Novel Therapeutic Target in Squamous Cell Lung Cancer

Peter S. Hammerman; Martin L. Sos; Alex H. Ramos; Chunxiao Xu; Amit Dutt; Wenjun Zhou; Lear E. Brace; Brittany A. Woods; Wenchu Lin; Jianming Zhang; Xianming Deng; Sang Min Lim; Stefanie Heynck; Martin Peifer; Jeffrey R. Simard; Michael S. Lawrence; Robert C. Onofrio; Helga B. Salvesen; Danila Seidel; Thomas Zander; Johannes M. Heuckmann; Alex Soltermann; Holger Moch; Mirjam Koker; Frauke Leenders; Franziska Gabler; Silvia Querings; Sascha Ansén; Elisabeth Brambilla; Christian Brambilla

UNLABELLED While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.


PLOS ONE | 2011

Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer

Amit Dutt; Alex H. Ramos; Peter S. Hammerman; Craig H. Mermel; Jeonghee Cho; Tanaz Sharifnia; Ajit G. Chande; Kumiko Tanaka; Nicolas Stransky; Heidi Greulich; Nathanael S. Gray; Matthew Meyerson

Background Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma. Methodology/Principal Findings Using SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes–WHSC1L1, LETM2, and FGFR1–is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition. Conclusions/Significance These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2

Heidi Greulich; Bethany Kaplan; Philipp Mertins; Tzu-Hsiu Chen; Kumiko Tanaka; Cai-Hong Yun; Xiaohong Zhang; Se-Hoon Lee; Jeonghee Cho; Lauren Ambrogio; Rachel G. Liao; Marcin Imielinski; Shantanu Banerji; Alice H. Berger; Michael S. Lawrence; Jinghui Zhang; Nam H. Pho; Sarah R. Walker; Wendy Winckler; Gad Getz; David A. Frank; William C. Hahn; Michael J. Eck; D. R. Mani; Jacob D. Jaffe; Steven A. Carr; Kwok-Kin Wong; Matthew Meyerson

We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.


Cancer Biology & Therapy | 2009

Amplification of chromosomal segment 4q12 in non-small cell lung cancer

Alex H. Ramos; Amit Dutt; Craig H. Mermel; Sven Perner; Jeonghee Cho; Christopher J. Lafargue; Laura A. Johnson; Ann Cathrin Stiedl; Kumiko Tanaka; Adam J. Bass; Jordi Barretina; Barbara A. Weir; Rameen Beroukhim; Roman K. Thomas; John D. Minna; Lucian R. Chirieac; Neal I. Lindeman; Thomas J. Giordano; David G. Beer; Patrick L. Wagner; Ignacio I. Wistuba; Mark A. Rubin; Matthew Meyerson

In cancer, proto-oncogenes are often altered by genomic amplification. Here we report recurrent focal amplifications of chromosomal segment 4q12 overlapping the proto-oncogenes PDGFRA and KIT in non-small cell lung cancer (NSCLC). Single nucleotide polymorphism (SNP) array and fluorescent in situ hybridization (FISH) analysis indicate that 4q12 is amplified in 3-7% of lung adenocarcinomas and 8-10% of lung squamous cell carcinomas. In addition, we demonstrate that the NSCLC cell line NCI-H1703 exhibits focal amplification of PDGFRA and is dependent on PDGFRα activity for cell growth. Treatment of NCI-H1703 cells with PDGFRA-specific shRNAs or with the PDGFRα/KIT small molecule inhibitors imatinib or sunitinib leads to cell growth inhibition. However, these observations do not extend to NSCLC cell lines with lower-amplitude and broader gains of chromosome 4q. Together these observations implicate PDGFRA and KIT as potential oncogenes in NSCLC, but further study is needed to define the specific characteristics of those tumors that could respond to PDGFRα/KIT inhibitors.


Cancer Research | 2011

Glioblastoma-Derived Epidermal Growth Factor Receptor Carboxyl-Terminal Deletion Mutants Are Transforming and Are Sensitive to EGFR-Directed Therapies

Jeonghee Cho; Sandra Pastorino; Qing Zeng; Xiaoyin Xu; William Johnson; Scott R. VandenBerg; Roeland Verhaak; Andrew D. Cherniack; Hideo Watanabe; Amit Dutt; Jihyun Kwon; Ying S. Chao; Robert C. Onofrio; Derek Y. Chiang; Yuki Yuza; Santosh Kesari; Matthew Meyerson

Genomic alterations of the epidermal growth factor receptor (EGFR) gene play a crucial role in pathogenesis of glioblastoma multiforme (GBM). By systematic analysis of GBM genomic data, we have identified and characterized a novel exon 27 deletion mutation occurring within the EGFR carboxyl-terminus domain (CTD), in addition to identifying additional examples of previously reported deletion mutations in this region. We show that the GBM-derived EGFR CTD deletion mutants are able to induce cellular transformation in vitro and in vivo in the absence of ligand and receptor autophosphorylation. Treatment with the EGFR-targeted monoclonal antibody, cetuximab, or the small molecule EGFR inhibitor, erlotinib, effectively impaired tumorigenicity of oncogenic EGFR CTD deletion mutants. Cetuximab in particular prolonged the survival of intracranially xenografted mice with oncogenic EGFR CTD deletion mutants, compared with untreated control mice. Therefore, we propose that erlotinib and, especially, cetuximab treatment may be a promising therapeutic strategy in GBM patients harboring EGFR CTD deletion mutants.


Genes & Development | 2013

Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target

Hideo Watanabe; Joshua M. Francis; Michele S. Woo; Banafsheh Etemad; Wenchu Lin; Daniel F. Fries; Shouyong Peng; Eric L. Snyder; Purushothama Rao Tata; Francesca Izzo; Anna C. Schinzel; Jeonghee Cho; Peter S. Hammerman; Roel G.W. Verhaak; William C. Hahn; Jayaraj Rajagopal; Tyler Jacks; Matthew Meyerson

The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas.


Cancer Research | 2013

Cetuximab Response of Lung Cancer–Derived EGF Receptor Mutants Is Associated with Asymmetric Dimerization

Jeonghee Cho; Liang Chen; Naveen F. Sangji; Takafumi Okabe; Kimio Yonesaka; Joshua M. Francis; Richard Flavin; William Johnson; Jihyun Kwon; Yu Ss; Heidi Greulich; Bruce E. Johnson; Michael J. Eck; Pasi A. Jänne; Kwok-Kin Wong; Matthew Meyerson

Kinase domain mutations of the EGF receptor (EGFR) are common oncogenic events in lung adenocarcinoma. Here, we explore the dependency upon asymmetric dimerization of the kinase domain for activation of lung cancer-derived EGFR mutants. We show that whereas wild-type EGFR and the L858R mutant require dimerization for activation and oncogenic transformation, the exon 19 deletion, exon 20 insertion, and L858R/T790M EGFR mutants do not require dimerization. In addition, treatment with the monoclonal antibody, cetuximab, shrinks mouse lung tumors induced by the dimerization-dependent L858R mutant, but exerts only a modest effect on tumors driven by dimerization-independent EGFR mutants. These data imply that different EGFR mutants show differential requirements for dimerization and that disruption of dimerization may be among the antitumor mechanisms of cetuximab.


Nature Structural & Molecular Biology | 2015

Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6.

Eunyoung Park; Nayoung Kim; Scott B. Ficarro; Yi Zhang; Byung Il Lee; Ahye Cho; Ki-Hong Kim; Angela K J Park; Woong-Yang Park; Bradley A. Murray; Matthew Meyerson; Rameen Beroukhim; Jarrod A. Marto; Jeonghee Cho; Michael J. Eck

Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectively targets activated receptors. Here we found that the epidermal growth factor receptor (EGFR) phosphorylates Mig6 on Y394 and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Y395, by Src. Crystal structures of human EGFR–Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and that can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1,057 gliomas reveals frequent focal deletions of ERRFI1, the gene that encodes Mig6, in EGFR-amplified glioblastomas.

Collaboration


Dive into the Jeonghee Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Dutt

Homi Bhabha National Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge