Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeongsik Kim is active.

Publication


Featured researches published by Jeongsik Kim.


Science | 2009

Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis

Jin Hee Kim; Jeongsik Kim; Pyung Ok Lim; In Chul Lee; Seung Hee Choi; Daehee Hwang; Hong Gil Nam

Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.


EPL | 2008

X-ray absorption spectroscopy of graphite oxide

Hae-Kyung Jeong; Han-Jin Noh; Jeongsik Kim; Meihua Jin; Chong-Yun Park; Young Hee Lee

We have investigated the electronic structure of graphite oxide using X-ray absorption spectroscopy at the carbon and oxygen K-edges. The unoccupied π* and σ* states associated with sp2 hybridization in graphite, are also apparent in the graphite oxide, which indicates that it has a graphitic structure even though it experiences oxidation and annealing. Additional electronic states of the graphite oxide which are not present in its precursor, graphite, are ascribed to the functional groups such as epoxide, carboxyl, and hydroxyl groups.


Journal of Experimental Botany | 2010

The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis

Jin Hee Kim; Jun-Young Kim; Jeongsik Kim; Ung Lee; In-Ja Song; Jin-Hong Kim; Hyo-Yeon Lee; Hong Gil Nam; Pyung Ok Lim

Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development and involves the extensive reprogramming of gene expression. Despite the importance of senescence in plants, the underlying regulatory mechanisms are not well understood. This study reports the isolation and functional analysis of RAV1, which encodes a RAV family transcription factor. Expression of RAV1 and its homologues is closely associated with leaf maturation and senescence. RAV1 mRNA increased at a later stage of leaf maturation and reached a maximal level early in senescence, but decreased again during late senescence. This profile indicates that RAV1 could play an important regulatory role in the early events of leaf senescence. Furthermore, constitutive and inducible overexpression of RAV1 caused premature leaf senescence. These data strongly suggest that RAV1 is sufficient to cause leaf senescence and it functions as a positive regulator in this process.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription

Lei Wang; Jeongsik Kim; David E. Somers

Circadian clocks are ubiquitous molecular time-keeping mechanisms that coordinate physiology and metabolism and provide an adaptive advantage to higher plants. The central oscillator of the plant clock is composed of interlocked feedback loops that involve multiple repressive factors acting throughout the circadian cycle. PSEUDO RESPONSE REGULATORS (PRRs) comprise a five-member family that is essential to the function of the central oscillator. PRR5, PRR7, and PRR9 can bind the promoters of the core clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) to restrict their expression to near dawn, but the mechanism has been unclear. Here we report that members of the plant Groucho/Tup1 corepressor family, TOPLESS/TOPLESS-RELATED (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period. This activity is diminished in the presence of the inhibitor trichostatin A, indicating the requirement of histone deacetylase for full TPL activity. Additionally, a complex of PRR9, TPL, and histone deacetylase 6, can form in vivo, implicating this tripartite association as a central repressor of circadian gene expression. Our findings show that the TPL/TPR corepressor family are components of the central circadian oscillator mechanism and reinforces the role of this family as central to multiple signaling pathways in higher plants.


Plant Physiology | 2010

Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts

Jeongsik Kim; David E. Somers

Rapid assessment of the effect of reduced levels of gene products is often a bottleneck in determining how to proceed with an interesting gene candidate. Additionally, gene families with closely related members can confound determination of the role of even a single one of the group. We describe here an in vivo method to rapidly determine gene function using transient expression of artificial microRNAs (amiRNAs) in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. We use a luciferase-based reporter of circadian clock activity to optimize and validate this system. Protoplasts transiently cotransfected with promoter-luciferase and gene-specific amiRNA plasmids sustain free-running rhythms of bioluminescence for more than 6 d. Using both amiRNA plasmids available through the Arabidopsis Biological Resource Center, as well as custom design of constructs using the Weigel amiRNA design algorithm, we show that transient knockdown of known clock genes recapitulates the same circadian phenotypes reported in the literature for loss-of-function mutant plants. We additionally show that amiRNA designed to knock down expression of the casein kinase II β-subunit gene family lengthens period, consistent with previous reports of a short period in casein kinase II β-subunit overexpressors. Our results demonstrate that this system can facilitate a much more rapid analysis of gene function by obviating the need to initially establish stably transformed transgenics to assess the phenotype of gene knockdowns. This approach will be useful in a wide range of plant disciplines when an endogenous cell-based phenotype is observable or can be devised, as done here using a luciferase reporter.


The Plant Cell | 2008

FIONA1 Is Essential for Regulating Period Length in the Arabidopsis Circadian Clock

Jeongsik Kim; Yumi Kim; Miji Yeom; Jin-Hee Kim; Hong Gil Nam

In plants, the circadian clock controls daily physiological cycles as well as daylength-dependent developmental processes such as photoperiodic flowering and seedling growth. Here, we report that FIONA1 (FIO1) is a genetic regulator of period length in the Arabidopsis thaliana circadian clock. FIO1 was identified by screening for a mutation in daylength-dependent flowering. The mutation designated fio1-1 also affects daylength-dependent seedling growth. fio1-1 causes lengthening of the free-running circadian period of leaf movement and the transcription of various genes, including the central oscillators CIRCADIAN CLOCK-ASSOCIATED1, LATE ELONGATED HYPOCOTYL, TIMING OF CAB EXPRESSION1, and LUX ARRHYTHMO. However, period lengthening is not dependent upon environmental light or temperature conditions, which suggests that FIO1 is not a simple input component of the circadian system. Interestingly, fio1-1 exerts a clear effect on the period length of circadian rhythm but has little effect on its amplitude and robustness. FIO1 encodes a novel nuclear protein that is highly conserved throughout the kingdoms. We propose that FIO1 regulates period length in the Arabidopsis circadian clock in a close association with the central oscillator and that the circadian period can be controlled separately from amplitude and robustness.


Cell Reports | 2013

ELF4 Regulates GIGANTEA Chromatin Access through Subnuclear Sequestration

Yumi Kim; Junhyun Lim; Miji Yeom; Hyunmin Kim; Jeongsik Kim; Lei Wang; Woe Yeon Kim; David E. Somers; Hong Gil Nam

Many organisms, including plants, use the circadian clock to measure the duration of day and night. Daily rhythms in the plant circadian system are generated by multiple interlocked transcriptional/translational loops and also by spatial regulations such as nuclear translocation. GIGANTEA (GI), one of the key clock components in Arabidopsis, makes distinctive nuclear bodies like other nuclear-localized circadian regulators. However, little is known about the dynamics or roles of GI subnuclear localization. Here, we characterize GI subnuclear compartmentalization and identify unexpected dynamic changes under diurnal conditions. We further identify EARLY FLOWERING 4 (ELF4) as a regulator of GI nuclear distribution through a physical interaction. ELF4 sequesters GI from the nucleoplasm, where GI binds the promoter of CONSTANS (CO), to discrete nuclear bodies. We suggest that the subnuclear compartmentalization of GI by ELF4 contributes to the regulation of photoperiodic flowering.


Proceedings of the National Academy of Sciences of the United States of America | 2011

HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE

Tae-sung Kim; Woe Yeon Kim; Sumire Fujiwara; Jeongsik Kim; Joon-Yung Cha; Jin Ho Park; Sang Yeol Lee; David E. Somers

The autoregulatory loops of the circadian clock consist of feedback regulation of transcription/translation circuits but also require finely coordinated cytoplasmic and nuclear proteostasis. Although protein degradation is important to establish steady-state levels, maturation into their active conformation also factors into protein homeostasis. HSP90 facilitates the maturation of a wide range of client proteins, and studies in metazoan clocks implicate HSP90 as an integrator of input or output. Here we show that the Arabidopsis circadian clock-associated F-box protein ZEITLUPE (ZTL) is a unique client for cytoplasmic HSP90. The HSP90-specific inhibitor geldanamycin and RNAi-mediated depletion of cytoplasmic HSP90 reduces levels of ZTL and lengthens circadian period, consistent with ztl loss-of-function alleles. Transient transfection of artificial microRNA targeting cytoplasmic HSP90 genes similarly lengthens period. Proteolytic targets of SCFZTL, TOC1 and PRR5, are stabilized in geldanamycin-treated seedlings, whereas the levels of closely related clock proteins, PRR3 and PRR7, are unchanged. An in vitro holdase assay, typically used to demonstrate chaperone activity, shows that ZTL can be effectively bound, and aggregation prevented, by HSP90. GIGANTEA, a unique stabilizer of ZTL, may act in the same pathway as HSP90, possibly linking these two proteins to a similar mechanism. Our findings establish maturation of ZTL by HSP90 as essential for proper function of the Arabidopsis circadian clock. Unlike metazoan systems, HSP90 functions here within the core oscillator. Additionally, F-box proteins as clients may place HSP90 in a unique and more central role in proteostasis.


Development | 2013

The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA

Jeongsik Kim; Ruishuang Geng; Richard Gallenstein; David E. Somers

Nucleocytoplasmic partitioning of core clock components is essential for the proper operation of the circadian system. Previous work has shown that the F-box protein ZEITLUPE (ZTL) and clock element GIGANTEA (GI) heterodimerize in the cytosol, thereby stabilizing ZTL. Here, we report that ZTL post-translationally and reciprocally regulates protein levels and nucleocytoplasmic distribution of GI in Arabidopsis. We use ectopic expression of the N-terminus of ZTL, which contains the novel, light-absorbing region of ZTL (the LOV domain), transient expression assays and ztl mutants to establish that the levels of ZTL, a cytosolic protein, help govern the abundance and distribution of GI in the cytosol and nucleus. Ectopic expression of the ZTL N-terminus lengthens period, delays flowering time and alters hypocotyl length. We demonstrate that these phenotypes can be explained by the competitive interference of the LOV domain with endogenous GI-ZTL interactions. A complex of the ZTL N-terminus polypeptide with endogenous GI (LOV-GI) blocks normal GI function, causing degradation of endogenous ZTL and inhibition of other GI-related phenotypes. Increased cytosolic retention of GI by the LOV-GI complex additionally inhibits nuclear roles of GI, thereby lengthening flowering time. Hence, we conclude that under endogenous conditions, GI stabilization and cytoplasmic retention occurs naturally through a LOV domain-mediated GI-ZTL interaction, and that ZTL indirectly regulates GI nuclear pools by sequestering GI to the cytosol. As the absence of either GI or ZTL compromises clock function and diminishes the protein abundance of the other, our results highlight how their reciprocal co-stabilization is essential for robust circadian oscillations.


Plant Physiology | 2016

Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

Hye Ryun Woo; Hee Jung Koo; Jeongsik Kim; Hyobin Jeong; Jin Ok Yang; Il Hwan Lee; Ji Hyung Jun; Seung Hee Choi; Su Jin Park; Byeongsoo Kang; You Wang Kim; Bong-Kwan Phee; Jin Hee Kim; Chaehwa Seo; Charny Park; Sang Cheol Kim; Seongjin Park; Byungwook Lee; Sanghyuk Lee; Daehee Hwang; Hong Gil Nam; Pyung Ok Lim

RNA-seq analysis of total and small RNAs throughout the lifespan of Arabidopsis leaves revealed that leaf senescence proceeds with tight temporal and distinctive inter-organellar coordination of transcriptomes. Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.

Collaboration


Dive into the Jeongsik Kim's collaboration.

Top Co-Authors

Avatar

Hong Gil Nam

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jin Hee Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pyung Ok Lim

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hye Ryun Woo

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yumi Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Miji Yeom

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Daehee Hwang

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Il Hwan Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

In Chul Lee

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge