Jeremiah G. Plass-Johnson
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremiah G. Plass-Johnson.
Scientific Reports | 2016
Antonio Di Franco; Pierre Thiriet; Giuseppe Di Carlo; Charalampos Dimitriadis; Patrice Francour; Nicolás L. Gutiérrez; Alain Jeudy de Grissac; Drosos Koutsoubas; Marco Milazzo; María del Mar Otero; Catherine Piante; Jeremiah G. Plass-Johnson; Susana Sainz-Trápaga; Luca Santarossa; Sergi Tudela; Paolo Guidetti
Marine protected areas (MPAs) have largely proven to be effective tools for conserving marine ecosystem, while socio-economic benefits generated by MPAs to fisheries are still under debate. Many MPAs embed a no-take zone, aiming to preserve natural populations and ecosystems, within a buffer zone where potentially sustainable activities are allowed. Small-scale fisheries (SSF) within buffer zones can be highly beneficial by promoting local socio-economies. However, guidelines to successfully manage SSFs within MPAs, ensuring both conservation and fisheries goals, and reaching a win-win scenario, are largely unavailable. From the peer-reviewed literature, grey-literature and interviews, we assembled a unique database of ecological, social and economic attributes of SSF in 25 Mediterranean MPAs. Using random forest with Boruta algorithm we identified a set of attributes determining successful SSFs management within MPAs. We show that fish stocks are healthier, fishermen incomes are higher and the social acceptance of management practices is fostered if five attributes are present (i.e. high MPA enforcement, presence of a management plan, fishermen engagement in MPA management, fishermen representative in the MPA board, and promotion of sustainable fishing). These findings are pivotal to Mediterranean coastal communities so they can achieve conservation goals while allowing for profitable exploitation of fisheries resources.
Scientific Reports | 2017
Sylvaine Giakoumi; Claudia Scianna; Jeremiah G. Plass-Johnson; Fiorenza Micheli; Kirsten Grorud-Colvert; Pierre Thiriet; Joachim Claudet; Giuseppe Di Carlo; Antonio Di Franco; Steven D. Gaines; José Antonio García-Charton; Jane Lubchenco; Jessica N. Reimer; Enric Sala; Paolo Guidetti
Marine protected areas (MPAs) are a cornerstone of marine conservation. Globally, the number and coverage of MPAs are increasing, but MPA implementation lags in many human-dominated regions. In areas with intense competition for space and resources, evaluation of the effects of MPAs is crucial to inform decisions. In the human-dominated Mediterranean Sea, fully protected areas occupy only 0.04% of its surface. We evaluated the impacts of full and partial protection on biomass and density of fish assemblages, some commercially important fishes, and sea urchins in 24 Mediterranean MPAs. We explored the relationships between the level of protection and MPA size, age, and enforcement. Results revealed significant positive effects of protection for fisheries target species and negative effects for urchins as their predators benefited from protection. Full protection provided stronger effects than partial protection. Benefits of full protection for fish biomass were only correlated with the level of MPA enforcement; fish density was higher in older, better enforced, and —interestingly— smaller MPAs. Our finding that even small, well-enforced, fully protected areas can have significant ecological effects is encouraging for “crowded” marine environments. However, more data are needed to evaluate sufficient MPA sizes for protecting populations of species with varying mobility levels.
PLOS ONE | 2016
Jeremiah G. Plass-Johnson; Marc Hollis Taylor; Aidah A. Husain; Mirta Teichberg; Sebastian C. A. Ferse
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations.
Frontiers in Marine Science | 2018
Mirta Teichberg; Christian Wild; Vanessa N. Bednarz; Hauke F. Kegler; Muhammad Lukman; Astrid Gärdes; Jasmin P. Heiden; Laura Weiand; Nur Abu; Andriani Nasir; Sara Miñarro; Sebastian C. A. Ferse; Hauke Reuter; Jeremiah G. Plass-Johnson
Pollution, fishing, and outbreaks of predators can heavily impact coastal coral reef ecosystems, leading to decreased water quality and benthic community shifts. To determine the main environmental drivers of coral reef status in the Spermonde Archipelago, Indonesia, we monitored environmental variables and coral reef benthic community structure along an on-to-offshore gradient annually from 2012-2014. Findings revealed that concentrations of phosphate, chlorophyll a-like fluorescence, suspended particulate matter, and light attenuation significantly decreased from on-to-offshore, while concentrations of dissolved O2 and values of water pH significantly increased on-to-offshore. Nitrogen stable isotope signatures of sediment and an exemplary common brown alga were significantly enriched nearshore, identifying wastewater input as a primary N source from the city of Makassar. In contrast to the high temporal variability in water quality, coral reef benthic community cover did not show strong temporal, but rather, spatial patterns. Turf algae was the dominant group next to live coral, and was negatively correlated to live coral, crustose coralline algae (CCA), rubble and hard substrate. Variation in benthic cover along the gradient was explained by water quality variables linked to trophic status and physico-chemical variables. As an integrated measure of reef status and structural complexity, the benthic index, based on the ratio of relative cover of live coral and CCA to other coral reef organisms, and reef rugosity were determined. The benthic index was consistently low nearshore and increased offshore, with high variability in the midshelf sites across years. Reef rugosity was also lowest nearshore and increased further offshore. Both indices dropped in 2013, increasing again in 2014, indicating a period of acute disturbance and recovery within the study and suggesting that the mid-shelf reefs are more resilient to disturbance than nearshore reefs. We thus recommend using these two indices with a selected number of environmental variables as an integral part of future reef monitoring.
Frontiers in Marine Science | 2018
Marion Glaser; Jeremiah G. Plass-Johnson; Sebastian C. A. Ferse; Muhammad Neil; Dewi Yanuarita Satari; Mirta Teichberg; Hauke Reuter
Strong resilience of a system usually enables the protection of a status quo. Most resilience studies assume that resilience-building is the central objective of sustainability work. Even though transformation has become a central theme in the development and social-ecological debates, questions surrounding the weakening resilience of undesired system states are rarely analyzed. We suggest that resilience studies not only serve to protect systems and feedbacks we want to maintain, but may also help to understand and overcome chronic, undesirable, - and thus wicked - resilience. This contribution focuses on reef fisheries in the Spermonde Island Archipelago in Indonesia, based on social and ecological studies between 2004 and 2016. We identify a number of interlocking wickedly resilient vicious cycles as predominant drivers of the poverty and exploitation of fishing households and the overexploited, polluted and degraded state of the coral reefs that fishers’ livelihoods depend on. We argue that, more often than not in the Anthropocene, breaking resilience has a central role in the pursuit of sustainable human-nature relations. Therefore, the link between the resilience and the transformation debates needs to be much more explicitly made. Breaking interlocking, wicked resilience at multiple levels is needed to move towards sustainable human-nature relations from the local to the global level. There are lacunae in debate, literature, and research practice as to when, where and how wicked resilience might need to be weakened. A more complete resilience lens is particularly needed under Anthropocene conditions to support the unmaking of chronically resilient, anthropogenic systems.
Frontiers in Marine Science | 2018
Jeremiah G. Plass-Johnson; Mirta Teichberg; Vanessa N. Bednarz; Astrid Gärdes; Jasmin P. Heiden; Muhammad Lukman; Sara Miñarro; Hauke F. Kegler; Laura Weiand; Christian Wild; Hauke Reuter; Sebastian C. A. Ferse
The Spermonde Archipelago is a complex of ~70 mostly populated islands off Southwest Sulawesi, Indonesia, in the center of the Coral Triangle. The reefs in this area are exposed to a high level of anthropogenic disturbances. Previous studies have shown that variation in the benthos is strongly linked to water quality and distance from the mainland. However, little is known about the fish assemblages of the region and if their community structure also follows a relationship with benthic structure and distance from shore. In this study, we used eight islands of the archipelago, varying in distance from 1-55 km relative to the mainland, and three years of surveys, to describe benthic and fish assemblages and to examine the spatial and temporal influence of benthic composition on the structure of the fish assemblages. Cluster analysis indicated that distinct groups of fish were associated with distance, while few species were present across the entire range of sites. Relating fish communities to benthic composition using a multivariate generalized linear model confirmed that fish groups relate to structural complexity (rugosity) or differing benthic groups; either algae, reef builders (coral and crustose coralline algae) or invertebrates and rubble. From these relationships we can identify sets of fish species that may be lost given continued degradation of the Spermonde reefs. Lastly, the incorporation of water quality, benthic and fish indices indicates that local coral reefs responded positively after an acute disturbance in 2013 with increases in reef builders and fish diversity over relatively short (one year) time frames. This study contributes an important, missing component (fish community structure) to the growing literature on the Spermonde Archipelago, a system that features environmental pressures common in the greater Southeast Asian region.
Frontiers in Microbiology | 2017
Hauke F. Kegler; Muhammad Lukman; Mirta Teichberg; Jeremiah G. Plass-Johnson; Christiane Hassenrück; Christian Wild; Astrid Gärdes
Coastal eutrophication is a key driver of shifts in bacterial communities on coral reefs. With fringing and patch reefs at varying distances from the coast the Spermonde Archipelago in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal eutrophication along a spatially defined gradient. The present study investigated bacterial community composition of three coral reef habitats: the water column, sediments, and mucus of the hard coral genus Fungia, along that cross-shelf environmental and water quality gradient. The main research questions were: (1) How do water quality and bacterial community composition change along a coastal shelf gradient? (2) Which water quality parameters influence bacterial community composition? (3) Is there a difference in bacterial community composition among the investigated habitats? For this purpose, a range of key water parameters were measured at eight stations in distances from 2 to 55 km from urban Makassar. This was supplemented by sampling of bacterial communities of important microbial habitats using 454 pyrosequencing. Findings revealed that the population center Makassar had a strong effect on the concentrations of Chlorophyll a, suspended particulate matter (SPM), and transparent exopolymer particles (TEP), which were all significantly elevated at the inshore compared the other seven sites. Shifts in the bacterial communities were specific to each sampled habitat. Two OTUs, belonging to the genera Escherichia/Shigella (Gammaproteobacteria) and Ralstonia (Betaproteobacteria), respectively, both dominated the bacterial community composition of the both size fractions of the water column and coral mucus. The sampled reef sediments were more diverse, and no single OTUs was dominant. There was no gradual shift in bacterial classes or OTUs within the sampled habitats. In addition, we observed very distinct communities between the investigated habitats. Our data show strong changes in the bacterial community composition at the inshore site for water column and sediment samples. Alarmingly, there was generally a high prevalence of potentially pathogenic bacteria across the entire gradient.
Frontiers in Marine Science | 2018
Jeremiah G. Plass-Johnson; Vanessa N. Bednarz; Jaclyn M. Hill; Jamaluddin Jompa; Sebastian C. A. Ferse; Mirta Teichberg
Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish, Chlorurus bleekeri, a roving consumer, the range of 15N (positive) and 13C (negative) and their niche area (positive) displayed significant relationships with the amount of rubble in the habitat. In contrast, the farming damselfish, Dischistodus prosopotaenia, showed a narrow range of both 15N and 13C, displaying little change in niche parameters among sites. This may indicate that parrotfish vary their feeding according to habitat, while the damselfish continue to maintain their turf and invertebrate resources. Assessing isotopic niches may help to better understand the specific trophic responses to change in the environment. Furthermore, the use of isotopic niches underline the utility of stable isotopes in studying the potential impacts of environmental change on feeding ecology.
Limnology and Oceanography | 2015
Jeremiah G. Plass-Johnson; Sebastian C. A. Ferse; Jamaluddin Jompa; Christian Wild; Mirta Teichberg
Regional Environmental Change | 2015
Jeremiah G. Plass-Johnson; Hauke Schwieder; Jasmin P. Heiden; Laura Weiand; Christian Wild; Jamaluddin Jompa; Sebastian C. A. Ferse; Mirta Teichberg