Jeremiah J. Gassensmith
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremiah J. Gassensmith.
Journal of the American Chemical Society | 2011
Jeremiah J. Gassensmith; Hiroyasu Furukawa; Ronald A. Smaldone; Ross S. Forgan; Youssry Y. Botros; Omar M. Yaghi; J. Fraser Stoddart
The efficient capture and storage of gaseous CO(2) is a pressing environmental problem. Although porous metal-organic frameworks (MOFs) have been shown to be very effective at adsorbing CO(2) selectively by dint of dipole-quadruple interactions and/or ligation to open metal sites, the gas is not usually trapped covalently. Furthermore, the vast majority of these MOFs are fabricated from nonrenewable materials, often in the presence of harmful solvents, most of which are derived from petrochemical sources. Herein we report the highly selective adsorption of CO(2) by CD-MOF-2, a recently described green MOF consisting of the renewable cyclic oligosaccharide γ-cyclodextrin and RbOH, by what is believed to be reversible carbon fixation involving carbonate formation and decomposition at room temperature. The process was monitored by solid-state (13)C NMR spectroscopy as well as colorimetrically after a pH indicator was incorporated into CD-MOF-2 to signal the formation of carbonic acid functions within the nanoporous extended framework.
Angewandte Chemie | 2010
Ronald A. Smaldone; Ross S. Forgan; Hiroyasu Furukawa; Jeremiah J. Gassensmith; Alexandra M. Z. Slawin; Omar M. Yaghi; J. Fraser Stoddart
Metal–organic frameworks (MOFs) represent an extensive class of porous crystals in which organic struts link metalcontaining clusters. The success in controlling the functionality and structure of MOFs has led to numerous applications, most notably gas adsorption, storage of clean gas fuels, catalysis, separations, and drug delivery. However, the vast majority of MOFs described to date are composed of organic struts derived from non-renewable petrochemical feedstocks and transition metals. The challenge in preparing MOFs from natural products lies in the inherent asymmetry of the building units, which are not amenable to crystallization in the form of highly porous frameworks. Herein, we report a strategy to overcome this problem using g-cyclodextrin (g-CD), a symmetrical cyclic oligosaccharide that is mass-produced enzymatically from starch and comprised of eight asymmetric a-1,4-linked dglucopyranosyl residues. These g-CD building units are then linked by potassium ions, in aqueous media at ambient temperature and pressure, to form a body-centered cubic structure, termed CD-MOF-1, which has the empirical formula [(C48H80O40)(KOH)2]n. CD-MOFs can be prepared entirely from edible ingredients: combining food-grade g-CD with salt substitute (KCl) or potassium benzoate (food additive E212) in bottled water and Everclear grain spirit (EtOH) yields porous frameworks which constitute edible MOFs. While there have been a few reports of MOFs assembled from amino acids, nucleobases, peptides, magnesium formates, and metal glutarates, examples of these materials are not common despite the rapidly growing desire to fabricate MOFs from naturally available building blocks. We suspect that the key to our success in assembling CD-MOFs lies in the symmetric arrangement (C8) within the g-CD torus of eight asymmetric (C1) a-1,4-linked d-glucopyranosyl residues and the ready availability of g-CD as a chiral molecular building block (Figure 1). CD-MOF-1 was prepared by combining 1.0 equiv of g-CD with 8.0 equiv of KOH in aqueous solution, followed by vapor diffusion of MeOH into the solution during 2–7 days, resulting in colorless, cubic, single crystals, suitable for X-ray crystallography, in approximately 70% yield. Other CD-MOFs were readily obtained using salts of Na, Rb, and Cs, giving rise to an extensive new family of porous materials. A complete list of metal salts employed to form CD-MOFs and the full synthesis of CDMOFs are provided in Section S2 of the Supporting Information. The X-ray crystal structure of CD-MOF-1 reveals that eight-coordinate K ions not only assist in the assembly of (gCD)6 cubes (Figure 2a,b), wherein six g-CD units occupy the faces of a cube, but they also serve to link these cubes together in a three-dimensional array which extends throughout the crystal (Figure 2c). The (g-CD)6 repeating motifs adopt a body-centered cubic packing arrangement wherein each symmetrically equivalent K ion links two contiguous g-CD
Chemical Communications | 2009
Jeremiah J. Gassensmith; Jeffrey M. Baumes; Bradley D. Smith
The chemical and photophysical properties of a fluorescent squaraine dye are greatly enhanced when it is mechanically encapsulated inside a tetralactam macrocycle. This feature article describes the synthesis, structure, and photophysical performance of first-generation squaraine rotaxanes, and shows how they can be used as fluorescent imaging probes and chemosensors.
Chemistry: A European Journal | 2010
Jeremiah J. Gassensmith; Sarah Matthys; Jung Jae Lee; Aleksandra Wojcik; Prashant V. Kamat; Bradley D. Smith
A mechanically interlocked squaraine rotaxane is comprised of a deep-red fluorescent squaraine dye inside a tetralactam macrocycle. NMR studies show that Cl(-) binding to the rotaxane induces macrocycle translocation away from the central squaraine station, a process that is completely reversed when the Cl(-) is removed from the solution. Steady-state fluorescence and excited-state lifetime measurements show that this reversible machine-like motion modulates several technically useful optical properties, including a three-fold increase in deep-red fluorescence emission that is observable to the naked eye. The excited states were characterized quantitatively by time-correlated single photon counting, femtosecond transient absorption spectroscopy, and nanosecond laser flash photolysis. Cl(-) binding to the rotaxane increases the squaraine excited singlet state lifetime from 1.5 to 3.1 ns, and decreases the excited triplet state lifetime from >200 to 44 micros. Apparently, the surrounding macrocycle quenches the excited singlet state of the encapsulated squaraine dye and stabilizes the excited triplet state. Prototype dipsticks were prepared by adsorbing the lipophilic rotaxane onto the ends of narrow, C18-coated, reverse-phase silica gel plates. The fluorescence intensity of a dipstick increased eighteen-fold upon dipping in an aqueous solution of tetrabutylammonium chloride (300 mM) and was subsequently reversed by washing with pure water. It is possible to develop the dipsticks for colorimetric determination of Cl(-) levels by the naked eye. After dipping into aqueous tetrabutylammonium chloride, a dipsticks color slowly fades at a rate that depends on the amount of Cl(-) in the aqueous solution. The fading process is due primarily to hydrolytic bleaching of the squaraine chromophore within the rotaxane. That is, association of Cl(-) to immobilized rotaxane induces macrocycle translocation and exposure of the electrophilic C(4)O(2) core of the squaraine station, which is in turn attacked by the ambient moisture to produce a bleached product.
Journal of the American Chemical Society | 2012
Ross S. Forgan; Ronald A. Smaldone; Jeremiah J. Gassensmith; Hiroyasu Furukawa; David B. Cordes; Qiaowei Li; Christopher E. Wilmer; Youssry Y. Botros; Randall Q. Snurr; Alexandra M. Z. Slawin; J. Fraser Stoddart
The binding of alkali and alkaline earth metal cations by macrocyclic and diazamacrobicyclic polyethers, composed of ordered arrays of hard oxygen (and nitrogen) donor atoms, underpinned the development of host-guest supramolecular chemistry in the 1970s and 1980s. The arrangement of -OCCO- and -OCCN- chelating units in these preorganized receptors, including, but not limited to, crown ethers and cryptands, is responsible for the very high binding constants observed for their complexes with Group IA and IIA cations. The cyclodextrins (CDs), cyclic oligosaccharides derived microbiologically from starch, also display this -OCCO- bidentate motif on both their primary and secondary faces. The self-assembly, in aqueous alcohol, of infinite networks of extended structures, which have been termed CD-MOFs, wherein γ-cyclodextrin (γ-CD) is linked by coordination to Group IA and IIA metal cations to form metal-organic frameworks (MOFs), is reported. CD-MOF-1 and CD-MOF-2, prepared on the gram-scale from KOH and RbOH, respectively, form body-centered cubic arrangements of (γ-CD)(6) cubes linked by eight-coordinate alkali metal cations. These cubic CD-MOFs are (i) stable to the removal of solvents, (ii) permanently porous, with surface areas of ~1200 m(2) g(-1), and (iii) capable of storing gases and small molecules within their pores. The fact that the -OCCO- moieties of γ-CD are not prearranged in a manner conducive to encapsulating single metal cations has led to our isolating other infinite frameworks, with different topologies, from salts of Na(+), Cs(+), and Sr(2+). This lack of preorganization is expressed emphatically in the case of Cs(+), where two polymorphs assemble under identical conditions. CD-MOF-3 has the cubic topology observed for CD-MOFs 1 and 2, while CD-MOF-4 displays a channel structure wherein γ-CD tori are perfectly stacked in one dimension in a manner reminiscent of the structures of some γ-CD solvates, but with added crystal stability imparted by metal-ion coordination. These new MOFs demonstrate that the CDs can indeed function as ligands for alkali and alkaline earth metal cations in a manner similar to that found with crown ethers. These inexpensive, green, nanoporous materials exhibit absorption properties which make them realistic candidates for commercial development, not least of all because edible derivatives, fit for human consumption, can be prepared entirely from food-grade ingredients.
Organic Letters | 2008
Jeremiah J. Gassensmith; Lorna Barr; Jeffrey M. Baumes; Agelina Paek; Anh Nguyen; Bradley D. Smith
Pseudorotaxane complexes of squaraine dyes and tetralactam macrocycles are converted into permanently interlocked rotaxane structures using copper-catalyzed and copper-free cycloaddition reactions with bulky stopper groups. The photophysical properties of the encapsulated squaraine depend on the structure of the macrocycle. In one case, squaraine rotaxanes are produced in near-quantitative yields and with intense near-IR fluorescence. In another case, squaraine fluorescence is greatly diminished upon macrocyclic encapsulation but the signal can be restored by dye displacement with anions.
Journal of the American Chemical Society | 2013
Di Wu; Jeremiah J. Gassensmith; Douglas Gouvêa; Sergey V. Ushakov; J. Fraser Stoddart; Alexandra Navrotsky
The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior. At near-zero coverage, an irreversible binding event with an enthalpy of -113.5 kJ/mol CO2 is observed, which is followed by a reversible -65.4 kJ/mol binding event. These enthalpies are assigned to adsorption on more and less reactive hydroxyl groups, respectively. Further, a second plateau shows an enthalpy of -40.1 kJ/mol and is indicative of physisorbed CO2. The calorimetric data confirm the presence of at least two energetically distinct binding sites for chemisorbed CO2 on CD-MOF-2.
Angewandte Chemie | 2011
Shuangbing Han; Yanhu Wei; Cory Valente; Ross S. Forgan; Jeremiah J. Gassensmith; Ronald A. Smaldone; Hideyuki Nakanishi; Ali Coskun; J. Fraser Stoddart; Bartosz A. Grzybowski
Wet stamping allows metal–organic framework (MOF) crystals to be imprinted with micropatterns of various organic chemicals. Printing the MOFs with photochromic molecules and pH indicators generates stimuli-responsive micropatterns which change their appearance upon contact with specific chemicals (see picture), thus reporting the environmental “status” of the crystal.
Journal of the American Chemical Society | 2012
Ross S. Forgan; Jeremiah J. Gassensmith; David B. Cordes; Megan M. Boyle; Karel J. Hartlieb; Douglas C. Friedman; Alexandra M. Z. Slawin; J. Fraser Stoddart
A donor-acceptor [3]catenane incorporating two cyclobis(paraquat-p-phenylene) rings linked together by a dinaphtho[50]crown-14 macrocycle possesses a π-electron-deficient pocket. Contrary to expectation, negligible binding of a hexaethylene glycol chain interrupted in its midriff by a π-electron-rich 1,5-dioxynaphthalene unit was observed in acetonitrile. However, a fortuitous solid-state superstructure of the expected 1:1 complex revealed its inability to embrace any stabilizing [C-H···O] interactions between the clearly unwelcome guest and the host reluctantly accommodating it. By contrast, in aqueous solution, the 1:1 complex becomes very stable thanks to the intervention of hydrophobic bonding.
Chemical Communications | 2011
Megan M. Boyle; Ross S. Forgan; Douglas C. Friedman; Jeremiah J. Gassensmith; Ronald A. Smaldone; J. Fraser Stoddart; Jean-Pierre Sauvage
The intermolecular template-directed synthesis, separation and characterisation of two constitutional isomers that are self-complexing donor-acceptor [1]rotaxanes has been achieved by click chemistry, starting from a π-electron deficient tetracationic cyclophane containing two azide functions and a π-electron rich 1,5-dioxynaphthalene-containing polyether chain terminated by propargyl groups.