Jeremiah J. Peiffer
Murdoch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremiah J. Peiffer.
Molecular Psychiatry | 2013
Belinda M. Brown; Jeremiah J. Peiffer; Kevin Taddei; James Lui; Simon M. Laws; Veer Gupta; Tania Taddei; Vanessa Ward; Mark Rodrigues; Samantha Burnham; Stephanie R. Rainey-Smith; Victor L. Villemagne; Ashley I. Bush; K. Ellis; Colin L. Masters; David Ames; S L Macaulay; Cassandra Szoeke; Christopher C. Rowe; Ralph N. Martins
Previous studies suggest physical activity improves cognition and lowers Alzheimers disease (AD) risk. However, key AD pathogenic factors that are thought to be influenced by physical activity, particularly plasma amyloid-β (Aβ) and Aβ brain load, have yet to be thoroughly investigated. The objective of this study was to determine if plasma Aβ and amyloid brain deposition are associated with physical activity levels, and whether these associations differed between carriers and non-carriers of the apolipoprotein E (APOE) ɛ4 allele. Five-hundred and forty six cognitively intact participants (aged 60–95 years) from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) were included in these analyses. Habitual physical activity levels were measured using the International Physical Activity Questionnaire (IPAQ). Serum insulin, glucose, cholesterol and plasma Aβ levels were measured in fasting blood samples. A subgroup (n=116) underwent 11C-Pittsburgh compound B (PiB) positron emission tomography (PET) scanning to quantify brain amyloid load. Higher levels of physical activity were associated with higher high density lipoprotein (HDL) (P=0.037), and lower insulin (P<0.001), triglycerides (P=0.019) and Aβ1−42/1−40 ratio (P=0.001). After stratification of the cohort based on APOE ɛ4 allele carriage, it was evident that only non-carriers received the benefit of reduced plasma Aβ from physical activity. Conversely, lower levels of PiB SUVR (standardised uptake value ratio) were observed in higher exercising APOE ɛ4 carriers. Lower plasma Aβ1−42/1−40 and brain amyloid was observed in those reporting higher levels of physical activity, consistent with the hypothesis that physical activity may be involved in the modulation of pathogenic changes associated with AD.
Journal of Science and Medicine in Sport | 2015
Laura E. Juliff; Shona L. Halson; Jeremiah J. Peiffer
OBJECTIVES Anecdotally many athletes report worse sleep in the nights prior to important competitions. Despite sleep being acknowledged as an important factor for optimal athletic performance and overall health, little is understood about athlete sleep around competition. The aims of this study were to identify sleep complaints of athletes prior to competitions and determine whether complaints were confined to competition periods. DESIGN Cross-sectional study. METHODS A sample of 283 elite Australian athletes (129 male, 157 female, age 24±5 y) completed two questionnaires; Competitive Sport and Sleep questionnaire and the Pittsburgh Sleep Quality Index. RESULTS 64.0% of athletes indicated worse sleep on at least one occasion in the nights prior to an important competition over the past 12 months. The main sleep problem specified by athletes was problems falling asleep (82.1%) with the main reasons responsible for poor sleep indicated as thoughts about the competition (83.5%) and nervousness (43.8%). Overall 59.1% of team sport athletes reported having no strategy to overcome poor sleep compared with individual athletes (32.7%, p=0.002) who utilised relaxation and reading as strategies. Individual sport athletes had increased likelihood of poor sleep as they aged. The poor sleep reported by athletes prior to competition was situational rather than a global sleep problem. CONCLUSION Poor sleep is common prior to major competitions in Australian athletes, yet most athletes are unaware of strategies to overcome the poor sleep experienced. It is essential coaches and scientists monitor and educate both individual and team sport athletes to facilitate sleep prior to important competitions.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Martin Buchheit; Jeremiah J. Peiffer; Chris R. Abbiss; Paul B. Laursen
The aim of the present study was to assess the effect of cold water immersion (CWI) on postexercise parasympathetic reactivation. Ten male cyclists (age, 29 +/- 6 yr) performed two repeated supramaximal cycling exercises (SE(1) and SE(2)) interspersed with a 20-min passive recovery period, during which they were randomly assigned to either 5 min of CWI in 14 degrees C or a control (N) condition where they sat in an environmental chamber (35.0 +/- 0.3 degrees C and 40.0 +/- 3.0% relative humidity). Rectal temperature (T(re)) and beat-to-beat heart rate (HR) were recorded continuously. The time constant of HR recovery (HRRtau) and a time (30-s) varying vagal-related HR variability (HRV) index (rMSSD(30s)) were assessed during the 6-min period immediately following exercise. Resting vagal-related HRV indexes were calculated during 3-min periods 2 min before and 3 min after SE(1) and SE(2). Results showed no effect of CWI on T(re) (P = 0.29), SE performance (P = 0.76), and HRRtau (P = 0.61). In contrast, all vagal-related HRV indexes were decreased after SE(1) (P < 0.001) and tended to decrease even further after SE(2) under N condition but not with CWI. When compared with the N condition, CWI increased HRV indexes before (P < 0.05) and rMSSD(30s) after (P < 0.05) SE(2). Our study shows that CWI can significantly restore the impaired vagal-related HRV indexes observed after supramaximal exercise. CWI may serve as a simple and effective means to accelerate parasympathetic reactivation during the immediate period following supramaximal exercise.
Molecular Psychiatry | 2013
Belinda M. Brown; Jeremiah J. Peiffer; Ralph N. Martins
Western countries are experiencing aging populations and increased longevity; thus, the incidence of dementia and Alzheimer’s disease (AD) in these countries is projected to soar. In the absence of a therapeutic drug, non-pharmacological preventative approaches are being investigated. One of these approaches is regular participation in physical activity or exercise. This paper reviews studies that have explored the relationship between physical activity and cognitive function, cognitive decline, AD/dementia risk and AD-associated biomarkers and processes. There is now strong evidence that links regular physical activity or exercise to higher cognitive function, decreased cognitive decline and reduced risk of AD or dementia. Nevertheless, these associations require further investigation, more specifically with interventional studies that include long follow-up periods. In particular, relatively little is known about the underlying mechanism(s) of the associations between physical activity and AD neuropathology; clearly this is an area in need of further research, particularly in human populations. Although benefits of physical activity or exercise are clearly recognised, there is a need to clarify how much physical activity provides the greatest benefit and also whether people of different genotypes require tailored exercise regimes.
British Journal of Sports Medicine | 2010
Jeremiah J. Peiffer; Chris R. Abbiss; Greig Watson; Kazunori Nosaka; Paul B. Laursen
Background This study examined the effect of a 5-min cold-water immersion (14°C) recovery intervention on repeated cycling performance in the heat. Methods 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35°C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th—10th minute), using a counterbalanced cross-over design (CP1TT1 → CWI or CON → CP2TT2). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo2 were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Results Compared with control, rectal temperature was significantly lower (0.5 (0.4)°C) in cold-water immersion before CP2 until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2)°C) during CP2 was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo2 were not influenced by the cold-water immersion recovery intervention. Conclusion 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.
Journal of Sports Sciences | 2009
Jeremiah J. Peiffer; Chris R. Abbiss; Greig Watson; Kazunori Nosaka; Paul B. Laursen
Abstract This study compared the effect of 5, 10 and 20 min of cold-water (14°C) immersion on rectal and muscle temperature and neuromuscular function. Twelve cyclists performed four cycling time-to-exhaustion trials in hot conditions (40°C and 40%rh), followed 25 min later by cold-water immersion for 5, 10 or 20 min or 20 min in room temperature (24°C; control). Rectal temperature was measured continuously, and muscle temperature was measured before, immediately after and 45 min after the time-to-exhaustion-test, as well as before and after water immersion. Sixty-second maximal voluntary isometric torque and isokinetic torque of the knee extensors were measured before, immediately after and 55 min after time-to-exhaustion-test. A greater rate of decrease in rectal temperature was observed in all water immersion conditions 45–80 min after time-to-exhaustion-test compared with control. Compared with control, muscle temperature 45 min after time-to-exhaustion-test was lower for all water immersion conditions; however, muscle temperature was lower for the 10- and 20-min conditions compared with 5 min. Isometric torque measured 55 min after time-to-exhaustion-test was lower for all conditions. Isokinetic torque was lower for all conditions immediately and 55-min post-time-to-exhaustion-test. Of the durations measured, 5 min of cold-water immersion appeared as the most appropriate duration for reducing rectal temperature but limiting decreases in muscle temperature.
British Journal of Sports Medicine | 2015
B.A. Wall; Greig Watson; Jeremiah J. Peiffer; Chris R. Abbiss; Rodney Siegel; Paul B. Laursen
Background Laboratory studies that support the hydration guidelines of leading governing bodies have shown that dehydration to only −2% of body mass can lead to increase in body temperature and heart rate during exercise, and decrease in performance. These studies, however, have been conducted in relatively windless environments (ie, wind speed <12.9 km/h), without participants being blinded to their hydration status. Aim To investigate the effect of blinded hydration status on cycling time-trial performance in the heat with ecologically valid facing wind speed conditions. Methods During three experimental trials, 10 cyclists were dehydrated to −3% body mass by performing 2 h of submaximal exercise (walking and cycling) in the heat, before being reinfused with saline to replace 100%, 33% or 0% of fluid losses, leaving them 0%, −2% or −3% hypohydrated, respectively. Participants then completed a 25 km time trial in the heat (33°C, 40% relative humidity; wind speed 32 km/h) during which their starting hydration status was maintained by infusing saline at a rate equal to their sweat rate. The treatment was participant-blinded and the order was randomised. Completion time, power output, heart rate, rectal temperature and perceptual variables were measured. Results While rectal temperature was higher beyond 17 km of the time trial in the −3% vs 0% conditions (38.9±0.3°C vs 38.6±0.3°C; p<0.05), no other differences between trials were shown. Conclusion When well-trained cyclists performed a 25 km cycling time trial under ecologically valid conditions and were blinded to their hydration status, performance, physiological and perceptual variables were not different between trials. These data do not support the residing basis behind many of the current hydration guidelines.
Journal of Science and Medicine in Sport | 2010
Jeremiah J. Peiffer; Chris R. Abbiss; Greig Watson; Kazunori Nosaka; Paul B. Laursen
This study examined the effect of a short cold water immersion (CWI) intervention on rectal and muscle temperature, isokinetic strength and 1-km cycling time trial performance in the heat. Ten male cyclists performed a 1-km time trial at 35.0+/-0.3 degrees C and 40.0+/-3.0% relative humidity, followed by 20 min recovery sitting in either cold water (14 degrees C) for 5 min or in 35 degrees C air (control); a second 1-km time trial immediately followed. Peak and mean cycling power output were recorded for both time trials. Rectal and muscle temperature, and maximal isokinetic concentric torque of the knee extensors were measured before and immediately after the first and second time trials. Rectal temperature was not different between cold water immersion and control conditions at any time points. After the second time trial, however, muscle temperature was significantly lower (-1.3+/-0.7 degrees C) in cold water immersion compared with the control trial. While peak and mean power decreased from the first to second time trial in both conditions (-86+/-54 W and -24+/-16 W, respectively), maximal isokinetic concentric torque was similar between conditions at all time points. The 5 min cold water immersion intervention lowered muscle temperature but did not affect isokinetic strength or 1-km cycling performance.
Sports Medicine | 2015
Chris R. Abbiss; Jeremiah J. Peiffer; Romain Meeusen; Sabrina Skorski
Ratings of perceived exertion (RPE) and effort are considered extremely important in the regulation of intensity during self-paced physical activity. While effort and exertion are slightly different constructs, these terms are often used interchangeably within the literature. The development of perceptions of both effort and exertion is a complicated process involving numerous neural processes occurring in various regions within the brain. It is widely accepted that perceptions of effort are highly dependent on efferent copies of central drive which are sent from motor to sensory regions of the brain. Additionally, it has been suggested that perceptions of effort and exertion are integrated based on the balance between corollary discharge and actual afferent feedback; however, the involvement of peripheral afferent sensory feedback in the development of such perceptions has been debated. As such, this review examines the possible difference between effort and exertion, and the implications of such differences in understanding the role of such perceptions in the regulation of pace during exercise.
Journal of Applied Physiology | 2008
Chris R. Abbiss; Jeremiah J. Peiffer; Jonathan M. Peake; Kazunori Nosaka; Katsuhiko Suzuki; David T. Martin; Paul B. Laursen
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.
Collaboration
Dive into the Jeremiah J. Peiffer's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs