Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremiah Wala is active.

Publication


Featured researches published by Jeremiah Wala.


Nature Genetics | 2013

Pan-cancer patterns of somatic copy number alteration

Travis I. Zack; Steven E. Schumacher; Scott L. Carter; Andrew D. Cherniack; Gordon Saksena; Barbara Tabak; Michael S. Lawrence; Cheng-Zhong Zhang; Jeremiah Wala; Craig H. Mermel; Carrie Sougnez; Stacey Gabriel; Bryan Hernandez; Hui Shen; Peter W. Laird; Gad Getz; Matthew Meyerson; Rameen Beroukhim

Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of the PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. Significantly recurrent focal SCNAs were observed in 140 regions, including 102 without known oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified regions without known oncogenes were enriched for genes involved in epigenetic regulation. When levels of genomic disruption were accounted for, 7% of region pairs were anticorrelated, and these regions tended to encompass genes whose proteins physically interact, suggesting related functions. These results provide insights into mechanisms of generation and functional consequences of cancer-related SCNAs.


Nature Genetics | 2016

Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

Joshua D. Campbell; Anton Alexandrov; Jaegil Kim; Jeremiah Wala; Alice H. Berger; Chandra Sekhar Pedamallu; Sachet A. Shukla; Guangwu Guo; Angela N. Brooks; Bradley A. Murray; Marcin Imielinski; Xin Hu; Shiyun Ling; Rehan Akbani; Mara Rosenberg; Carrie Cibulskis; Eric A. Collisson; David J. Kwiatkowski; Michael S. Lawrence; John N. Weinstein; Roel G.W. Verhaak; Catherine J. Wu; Peter S. Hammerman; Andrew D. Cherniack; Gad Getz; Maxim N. Artyomov; Robert D. Schreiber; Ramaswamy Govindan; Matthew Meyerson

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor–normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase–Ras–Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.


Medical Physics | 2012

Multicriteria VMAT optimization

David Craft; Dualta McQuaid; Jeremiah Wala; Wei Chen; Ehsan Salari; Thomas Bortfeld

PURPOSE To make the planning of volumetric modulated arc therapy (VMAT) faster and to explore the tradeoffs between planning objectives and delivery efficiency. METHODS A convex multicriteria dose optimization problem is solved for an angular grid of 180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus organ at risk sparing. The selected plan is then made VMAT deliverable by a fluence map merging and sequencing algorithm, which combines neighboring fluence maps based on a similarity score and then delivers the merged maps together, simplifying delivery. Successive merges are made as long as the dose distribution quality is maintained. The complete algorithm is called VMERGE. RESULTS VMERGE is applied to three cases: a prostate, a pancreas, and a brain. In each case, the selected Pareto-optimal plan is matched almost exactly with the VMAT merging routine, resulting in a high quality plan delivered with a single arc in less than 5 min on average. CONCLUSIONS VMERGE offers significant improvements over existing VMAT algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan, which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the user-chosen epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems.


Nature Genetics | 2016

MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism.

Pratiti Bandopadhayay; Lori A. Ramkissoon; Payal Jain; Guillaume Bergthold; Jeremiah Wala; Rhamy Zeid; Steven E. Schumacher; Laura M. Urbanski; Ryan O'Rourke; William J. Gibson; Kristine Pelton; Shakti Ramkissoon; Harry J. Han; Yuankun Zhu; Namrata Choudhari; Amanda Silva; Katie Boucher; Rosemary E. Henn; Yun Jee Kang; David Knoff; Brenton R. Paolella; Adrianne Gladden-Young; Pascale Varlet; Mélanie Pagès; Peleg Horowitz; Alexander J. Federation; Hayley Malkin; Adam Tracy; Sara Seepo; Matthew Ducar

Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs, including 19 angiocentric gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in angiocentric gliomas. In vitro and in vivo functional studies show that MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression and hemizygous loss of the tumor suppressor QKI. To our knowledge, this represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.


Nature Genetics | 2016

The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis

William J. Gibson; Erling A. Hoivik; Mari K. Halle; Amaro Taylor-Weiner; Andrew D. Cherniack; Anna Berg; Frederik Holst; Travis I. Zack; Henrica Maria Johanna Werner; Kjersti Mangseth Staby; Mara Rosenberg; Ingunn Stefansson; Kanthida Kusonmano; Aaron Chevalier; Karen Klepsland Mauland; Jone Trovik; Camilla Krakstad; Marios Giannakis; Eran Hodis; Kathrine Woie; Line Bjørge; Olav Karsten Vintermyr; Jeremiah Wala; Michael S. Lawrence; Gad Getz; Scott L. Carter; Rameen Beroukhim; Helga B. Salvesen

Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.


Oncogene | 2014

Oncogenic RIT1 mutations in lung adenocarcinoma.

Alice H. Berger; Marcin Imielinski; Fujiko Duke; Jeremiah Wala; Nathan Kaplan; Geng-Xian Shi; Douglas A. Andres; Matthew Meyerson

Lung adenocarcinoma is comprised of distinct mutational subtypes characterized by mutually exclusive oncogenic mutations in RTK/RAS pathway members KRAS, EGFR, BRAF and ERBB2, and translocations involving ALK, RET and ROS1. Identification of these oncogenic events has transformed the treatment of lung adenocarcinoma via application of therapies targeted toward specific genetic lesions in stratified patient populations. However, such mutations have been reported in only ∼55% of lung adenocarcinoma cases in the United States, suggesting other mechanisms of malignancy are involved in the remaining cases. Here we report somatic mutations in the small GTPase gene RIT1 in ∼2% of lung adenocarcinoma cases that cluster in a hotspot near the switch II domain of the protein. RIT1 switch II domain mutations are mutually exclusive with all other known lung adenocarcinoma driver mutations. Ectopic expression of mutated RIT1 induces cellular transformation in vitro and in vivo, which can be reversed by combined PI3K and MEK inhibition. These data identify RIT1 as a driver oncogene in a specific subset of lung adenocarcinomas and suggest PI3K and MEK inhibition as a potential therapeutic strategy in RIT1-mutated tumors.


Medical Dosimetry | 2013

Maximizing dosimetric benefits of IMRT in the treatment of localized prostate cancer through multicriteria optimization planning

Jeremiah Wala; David Craft; Jon Paly; Anthony L. Zietman; Jason A. Efstathiou

We examine the quality of plans created using multicriteria optimization (MCO) treatment planning in intensity-modulated radiation therapy (IMRT) in treatment of localized prostate cancer. Nine random cases of patients receiving IMRT to the prostate were selected. Each case was associated with a clinically approved plan created using Corvus. The cases were replanned using MCO-based planning in RayStation. Dose-volume histogram data from both planning systems were presented to 2 radiation oncologists in a blinded evaluation, and were compared at a number of dose-volume points. Both physicians rated all 9 MCO plans as superior to the clinically approved plans (p<10(-5)). Target coverage was equivalent (p = 0.81). Maximum doses to the prostate and bladder and the V50 and V70 to the anterior rectum were reduced in all MCO plans (p<0.05). Treatment planning time with MCO took approximately 60 minutes per case. MCO-based planning for prostate IMRT is efficient and produces high-quality plans with good target homogeneity and sparing of the anterior rectum, bladder, and femoral heads, without sacrificing target coverage.


Nature Medicine | 2018

Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes

Bjoern Chapuy; Chip Stewart; Andrew Dunford; Jaegil Kim; Atanas Kamburov; Robert Redd; Michael S. Lawrence; Margaretha G. M. Roemer; Amy Li; Marita Ziepert; Annette M. Staiger; Jeremiah Wala; Matthew Ducar; Ignaty Leshchiner; Ester Rheinbay; Amaro Taylor-Weiner; Caroline A. Coughlin; Julian Hess; Chandra S. Pedamallu; Dimitri Livitz; Daniel Rosebrock; Mara Rosenberg; Adam Tracy; Heike Horn; Paul Van Hummelen; Andrew L. Feldman; Brian K. Link; Anne J. Novak; James R. Cerhan; Thomas M. Habermann

Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.Comprehensive integration of mutational and structural alterations in clinically-annotated DLBCL patient samples provides a novel molecular classification of the disease.


Genome Research | 2018

SvABA: genome-wide detection of structural variants and indels by local assembly

Jeremiah Wala; Pratiti Bandopadhayay; Noah F. Greenwald; Ryan O'Rourke; Ted Sharpe; Chip Stewart; Steve Schumacher; Yilong Li; Joachim Weischenfeldt; Xiaotong Yao; Chad Nusbaum; Peter J. Campbell; Gad Getz; Matthew Meyerson; Cheng-Zhong Zhang; Marcin Imielinski; Rameen Beroukhim

Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABAs performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs.


Cell | 2018

Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing

Srinivas R. Viswanathan; Gavin Ha; Andreas M. Hoff; Jeremiah Wala; Jian Carrot-Zhang; Christopher W. Whelan; Nicholas J. Haradhvala; Samuel S. Freeman; Sarah C. Reed; Justin Rhoades; Paz Polak; Michelle Cipicchio; Stephanie A. Wankowicz; Alicia Wong; Tushar Kamath; Zhenwei Zhang; Gregory Gydush; Denisse Rotem; J. Christopher Love; Gad Getz; Stacey Gabriel; Cheng-Zhong Zhang; Scott M. Dehm; Peter S. Nelson; Eliezer M. Van Allen; Atish D. Choudhury; Viktor A. Adalsteinsson; Rameen Beroukhim; Mary-Ellen Taplin; Matthew Meyerson

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.

Collaboration


Dive into the Jeremiah Wala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge