Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremías Corradi is active.

Publication


Featured researches published by Jeremías Corradi.


The Journal of Neuroscience | 2008

The Interface between Extracellular and Transmembrane Domains of Homomeric Cys-Loop Receptors Governs Open-Channel Lifetime and Rate of Desensitization

Cecilia Bouzat; Mariana Bartos; Jeremías Corradi; Steven M. Sine

The lifetimes of activated postsynaptic receptor channels contribute to the efficiency of synaptic transmission. Here we show that structural differences within the interface dividing extracellular and transmembrane domains of homomeric α7 and 5-HT3A receptors account for the large differences in open-channel lifetime and time of desensitization onset between these contrasting members of the Cys-loop receptor superfamily. For α7 receptors, agonist-evoked single-channel currents appear mainly as isolated brief openings (τo = 0.35 ms), whereas macroscopic currents after a step pulse of agonist desensitize rapidly (τd = 0.4 ms). In contrast for 5-HT3A receptors, agonist-evoked single-channel currents appear as clusters of many long openings in quick succession (τcluster = 1.2 s), whereas macroscopic currents desensitize slowly (τd = 1.1 s). A chimeric α7-5HT3A receptor exhibits functional properties intermediate between those of the parent receptors, but the functional signatures of each parent are reconstituted after substituting the major loops within the interface of the extracellular and transmembrane domains from the corresponding parent receptor. Furthermore, these structural loops contribute to open-channel lifetime and time of desensitization onset in a nonadditive manner. The results suggest that desensitization is the major determinant of the lifetimes of activated α7 and 5-HT3A receptors and that functional differences between the two receptors arise primarily through structural differences at the interface between extracellular and transmembrane domains.


Molecular Pharmacology | 2016

Understanding the bases of function and modulation of α7 nicotinic receptors: Implications for drug discovery

Jeremías Corradi; Cecilia Bouzat

The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca2+ permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer’s disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Stoichiometry for activation of neuronal α7 nicotinic receptors

Natalia Andersen; Jeremías Corradi; Steven M. Sine; Cecilia Bouzat

Significance Nicotinic α7 receptors are neurotransmitter-gated ion channels that participate in cognitive, cytoprotective, and anti-inflammatory processes and have emerged as targets for neurological disorders and therapeutic drugs. They are associated with extrasynaptic volume transmission where they are exposed to low ACh concentrations and thus function with partial occupancy of their five identical binding sites. By generating α7 receptors with different numbers of functional ACh binding sites and measuring open-channel lifetimes of individual receptors, we find that occupancy of one site produces a maximal response and that the additional sites enhance agonist sensitivity. Thus, ACh occupancy of only one of five sites in α7 produces a maximal response, adapting it to extrasynaptic volume transmission in neuronal and nonneuronal cells. Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells.


Neuropharmacology | 2016

Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective

Natalia Andersen; Beatriz Elizabeth Nielsen; Jeremías Corradi; María Fernanda Tolosa; Dominik Feuerbach; Hugo R. Arias; Cecilia Bouzat

Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.


The Journal of Physiology | 2017

Molecular function of α7 nicotinic receptors as drug targets

Cecilia Bouzat; Matías Lasala; Beatriz Elizabeth Nielsen; Jeremías Corradi; María del Carmen Esandi

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand‐gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non‐neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimers and Parkinsons diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.


The Journal of Neuroscience | 2014

Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A Receptors

Jeremías Corradi; Cecilia Bouzat

Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.


Biophysical Journal | 2011

A Novel Mechanism of Modulation of 5-HT3A Receptors by Hydrocortisone

Jeremías Corradi; Natalia Andersen; Cecilia Bouzat

Modulation of Cys-loop receptors by steroids is of physiological and therapeutical relevance. Nonetheless, its molecular mechanism has not been elucidated for serotonin (5-HT) type 3 receptors. We deciphered the mechanism of action of hydrocortisone (HC) at 5-HT type 3A receptors. Single-channel currents from the high-conductance form (∼4.7 pA, -70 mV) appear as a series of long opening events forming bursts, which group into long clusters. Although they are very infrequent, subconductance events (∼2.4 pA) are detected within clusters. HC produces a significant concentration-dependent reduction in open and burst durations, demonstrating open-channel block. In addition, it increases the appearance of subconductance levels in a concentration- and slightly voltage-dependent manner. The amplitude of the subconductance level does not change with HC concentration and its open duration is briefer than that of full amplitude events, indicating lower open-channel stability. Dual effects are distinguished from macroscopic responses: HC reduces amplitude by acting from either open or closed states, and it increases decay rates from the open state. Thus, HC acts as a negative modulator of 5-HT type 3A receptors by different mechanisms: It acts as an open-channel blocker and it favors opening to a preexisting subconductance level. The latter constitutes a novel, to our knowledge, mechanism of channel modulation, which might be applicable to other steroids and channels.


Neuropharmacology | 2018

A novel pharmacological activity of caffeine in the cholinergic system

Camila Fabiani; Ana Paula Murray; Jeremías Corradi; Silvia S. Antollini

&NA; Cholinergic deficit is regarded as an important factor responsible for Alzheimers disease (AD) symptoms. Acetylcholinesterase (AChE) and nicotinic receptor (AChR) are two molecular targets for the treatment of this disease. We found here that methanolic extracts of Camellia sinensis exhibited anticholinesterase activity and induced AChR conformational changes. From bioguided fractionation we confirmed that caffeine was the active compound exerting such effects. It is well‐known that caffeine acts as an inhibitor of AChE and here we explored the effect of caffeine on the AChR by combining single channel recordings and fluorescent measurements. From single channel recordings we observed that caffeine activated both muscle and &agr;7 AChRs at low concentrations, and behaved as an open channel blocker which was evident at high concentrations. Fluorescent measurements were performed with the conformational sensitive probe crystal violet (CrV) and AChR rich membranes from Torpedo californica. Caffeine induced changes in the KD value of CrV in a concentration‐dependent manner taking the AChR closer to a desentisized state. In the presence of &agr;‐bungarotoxin, an AChR competitive antagonist, high concentrations of caffeine increased the KD value of CrV, compatible with a competition with CrV molecules for the luminal channel. Our electrophysiological and fluorescent experiments show that caffeine has a dual effect on nicotinic receptors, behaving as an agonist and an ion channel blocker, probably through distinct AChR sites with quite different affinities. Thus, caffeine or its derivatives can be considered for the design of promising multitarget‐directed drugs for AD treatment by modulation of different targets in the cholinergic pathway. HighlightsRed tea extracts modulate acetylcholinesterase (AChE) and nicotinic receptors (AChRs).Such modulation is mediated by caffeine.Caffeine acts as a partial agonist for muscle and neuronal AChRs.High caffeine concentrations block muscle AChR responses.


Molecular Pharmacology | 2018

Activation of Caenorhabditis elegans Levamisole-Sensitive and Mammalian Nicotinic Receptors by the Antiparasitic Bephenium

Ornella Turani; Guillermina Hernando; Jeremías Corradi; Cecilia Bouzat

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans. A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.


Journal of Biological Chemistry | 2018

A human-specific, truncated α7 nicotinic receptor subunit assembles with full-length α7 and forms functional receptors with different stoichiometries

Matías Lasala; Jeremías Corradi; Ariana Bruzzone; María del Carmen Esandi; Cecilia Bouzat

The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5–10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A. Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation. We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine whether dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, which require at least two α7 subunits for channel opening, and that dupα7s presence in the pentameric arrangement does not affect the duration of the potentiated events compared with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders.

Collaboration


Dive into the Jeremías Corradi's collaboration.

Top Co-Authors

Avatar

Cecilia Bouzat

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

Natalia Andersen

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María José De Rosa

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matías Lasala

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Paula Murray

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

Ariana Bruzzone

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

Camila Fabiani

Universidad Nacional del Sur

View shared research outputs
Researchain Logo
Decentralizing Knowledge