Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremie Boucher is active.

Publication


Featured researches published by Jeremie Boucher.


Cell Metabolism | 2008

Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice

Cédric Dray; Claude Knauf; Danièle Daviaud; Aurélie Waget; Jeremie Boucher; Marie Buléon; Patrice D. Cani; Camille Attané; Charlotte Guigné; Christian Carpéné; Rémy Burcelin; Isabelle Castan-Laurell; Philippe Valet

Adipose tissue (AT) secretes several adipokines that influence insulin sensitivity and potentially link obesity to insulin resistance. Apelin, a peptide present in different tissues, is also secreted by adipocytes. Apelin is upregulated in obese and hyperinsulinemic humans and mice. Although a tight relation exists between the regulation of apelin and insulin, it remains largely unknown whether apelin affects whole-body glucose utilization. Herein, we show that in chow-fed mice, acute intravenous injection of apelin has a powerful glucose-lowering effect associated with enhanced glucose utilization in skeletal muscle and AT. Through in vivo and in vitro pharmacological and genetic approaches, we demonstrate the involvement of endothelial NO synthase, AMP-activated protein kinase, and Akt in apelin-stimulated glucose uptake in soleus muscle. Remarkably, in obese and insulin-resistant mice, apelin restored glucose tolerance and increased glucose utilization. Apelin could thus represent a promising target in the management of insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

Enxuan Jing; Brice Emanuelli; Matthew D. Hirschey; Jeremie Boucher; Kevin Y. Lee; David B. Lombard; Eric Verdin; C. Ronald Kahn

Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle.


Cold Spring Harbor Perspectives in Biology | 2014

Insulin Receptor Signaling in Normal and Insulin-Resistant States

Jeremie Boucher; André Kleinridders; C. Ronald Kahn

In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications.


Diabetes | 2009

Sex and Depot Differences in Adipocyte Insulin Sensitivity and Glucose Metabolism

Yazmin Macotela; Jeremie Boucher; Thien T. Tran; C. Ronald Kahn

OBJECTIVE To investigate how insulin sensitivity and glucose metabolism differ in adipocytes between different fat depots of male and female mice and how sex steroids contribute to these differences. RESEARCH DESIGN AND METHODS Adipocytes from intra-abdominal/perigonadal (PG) and subcutaneous (SC) adipose tissue from normal, castrated, or steroid-implanted animals were isolated and analyzed for differences in insulin sensitivity and glucose metabolism. RESULTS Adipocytes from both PG and SC depots of females have increased lipogenic rates compared with those from males. In females, intra-abdominal PG adipocytes are more insulin-sensitive than SC adipocytes and more insulin-sensitive than male adipocytes from either depot. When stimulated by low physiological concentrations of insulin, female PG adipocytes show a robust increase in Akt and extracellular signal–related kinase (ERK) phosphorylation and lipogenesis, whereas male adipocytes show activation only at higher insulin concentrations. Adipocytes from females have higher mRNA/protein levels of several genes involved in glucose and lipid metabolism. After castration, adipocytes of male mice showed increased insulin sensitivity and increased lipogenic rates, whereas adipocytes of females demonstrate decreased lipid production. Increasing estrogen above physiological levels, however, also reduced lipid synthesis in females, whereas increasing dihydrotestosterone in males had no effect. CONCLUSIONS There are major sex differences in insulin sensitivity in adipose tissue, particularly in the intra-abdominal depot, that are regulated by physiological levels of sex steroids. The increased sensitivity to insulin and lipogenesis observed in adipocytes from females may account for their lower level of insulin resistance and diabetes risk despite similar or higher fat content than in males.


PLOS ONE | 2011

Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

Yazmin Macotela; Brice Emanuelli; Anneli M. Bång; Daniel O. Espinoza; Jeremie Boucher; Kirk Beebe; Walter Gall; C. Ronald Kahn

Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.


Diabetes | 2013

Lessons on Conditional Gene Targeting in Mouse Adipose Tissue

Kevin Y. Lee; Steven J. Russell; Siegfried Ussar; Jeremie Boucher; Cecile Vernochet; Marcelo A. Mori; Graham Smyth; Michael Rourk; Carly Cederquist; Evan D. Rosen; Barbara B. Kahn; C. Ronald Kahn

Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the adipocyte protein 2 (aP2) and adiponectin (Adipoq) gene promoters, as well as a tamoxifen-inducible Cre driven by the aP2 gene promoter (iaP2), were bred to the Rosa26R (R26R) reporter. All three Cre lines demonstrated recombination in the brown and white fat pads. Using different floxed loci, the individual Cre lines displayed a range of efficacy to Cre-mediated recombination that ranged from no observable recombination to complete recombination within the fat. The Adipoq-Cre exhibited no observable recombination in any other tissues examined, whereas both aP2-Cre lines resulted in recombination in endothelial cells of the heart and nonendothelial, nonmyocyte cells in the skeletal muscle. In addition, the aP2-Cre line can lead to germline recombination of floxed alleles in ∼2% of spermatozoa. Thus, different “adipocyte-specific” Cre lines display different degrees of efficiency and specificity, illustrating important differences that must be taken into account in their use for studying adipose biology.


Nature Medicine | 2010

A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response

Jonathon N. Winnay; Jeremie Boucher; Marcelo A. Mori; Kohjiro Ueki; C. Ronald Kahn

Class Ia phosphoinositide 3-kinase (PI3K), an essential mediator of the metabolic actions of insulin, is composed of a catalytic (p110α or p110β) and regulatory (p85αα, p85βα or p55α) subunit. Here we show that p85αα interacts with X-box–binding protein-1 (XBP-1), a transcriptional mediator of the unfolded protein response (UPR), in an endoplasmic reticulum (ER) stress-dependent manner. Cell lines with knockout or knockdown of p85αα show marked alterations in the UPR, including reduced ER stress–dependent accumulation of nuclear XBP-1, decreased induction of UPR target genes and increased rates of apoptosis. This is associated with a decreased activation of inositol-requiring protein-1α (IRE1α) and activating transcription factor-6αα (ATF6α). Mice with deletion of p85α in liver (L-Pik3r1−/−) show a similar attenuated UPR after tunicamycin administration, leading to an increased inflammatory response. Thus, p85αα forms a previously unrecognized link between the PI3K pathway, which is central to insulin action, and the regulation of the cellular response to ER stress, a state that when unresolved leads to insulin resistance.


Diabetes | 2006

Leptin Suppresses Stearoyl-CoA Desaturase 1 by Mechanisms Independent of Insulin and Sterol Regulatory Element–Binding Protein-1c

Sudha B. Biddinger; Makoto Miyazaki; Jeremie Boucher; James M. Ntambi; C. Ronald Kahn

Stearoyl-CoA desaturase (SCD)1 catalyzes the rate-limiting reaction of monounsaturated fatty acid (MUFA) synthesis and plays an important role in the development of obesity. SCD1 is suppressed by leptin but induced by insulin. We have used animal models to dissect the effects of these hormones on SCD1. In the first model, leptin-deficient ob/ob mice were treated with either leptin alone or with both leptin and insulin to prevent the leptin-mediated fall in insulin. In the second model, mice with a liver-specific knockout of the insulin receptor (LIRKO) and their littermate controls (LOXs) were treated with leptin. As expected, leptin decreased SCD1 transcript, protein, and activity by >60% in ob/ob and LOX mice. However, the effects of leptin were not diminished by the continued presence of hyperinsulinemia in ob/ob mice treated with both leptin and insulin or the absence of insulin signaling in LIRKO mice. Furthermore, genetic knockout of sterol regulatory element–binding protein (SREBP)-1c, the lipogenic transcription factor that mediates the effects of insulin on SCD1, also had no effect on the ability of leptin to decrease either SCD1 transcript or activity. Thus, the effect of leptin on SCD1 in liver is independent of insulin and SREBP-1c, and leptin, rather than insulin, is the major regulator of hepatic MUFA synthesis in obesity-linked diabetes.


Diabetologia | 2005

Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression

Jeremie Boucher; Didier Quilliot; J. P. Pradères; Marie-Françoise Simon; Sandra Grès; Charlotte Guigné; D. Prévot; Gilles Ferry; Jean A. Boutin; Christian Carpéné; Philippe Valet; Jean Sébastien Saulnier-Blache

Aims/hypothesisAutotaxin is a lysophospholipase D that is secreted by adipocytes and whose expression is substantially up-regulated in obese, diabetic db/db mice. The aim of the present study was to depict the physiopathological and cellular mechanisms involved in regulation of adipocyte autotaxin expression.MethodsAutotaxin mRNAs were quantified in adipose tissue from db/db mice (obese and highly diabetic type 2), gold-thioglucose-treated (GTG) mice (highly obese and moderately diabetic type 2), high-fat diet-fed (HFD) mice (obese and moderately diabetic type 2), streptozotocin-treated mice (thin and diabetic type 1), and massively obese humans with glucose intolerance.ResultsWhen compared to non-obese controls, autotaxin expression in db/db mice was significantly increased, but not in GTG, HFD, or streptozotocin-treated mice. During db/db mice development, up-regulation of autotaxin occurred only 3 weeks after the emergence of hyperinsulinaemia, and simultaneously with the emergence of hyperglycaaemia. Adipocytes from db/db mice exhibited a stronger impairment of insulin-stimulated glucose uptake than non-obese and HFD-induced obese mice. Autotaxin expression was up-regulated by treatment with TNFα (insulin resistance-promoting cytokine), and down-regulated by rosiglitazone treatment (insulin-sensitising compound) in 3T3F442A adipocytes. Finally, adipose tissue autotaxin expression was significantly up-regulated in patients exhibiting both insulin resistance and impaired glucose tolerance.Conclusions/interpretationThe present work demonstrates the existence of a db/db-specific up-regulation of adipocyte autotaxin expression, which could be related to the severe type 2 diabetes phenotype and adipocyte insulin resistance, rather than excess adiposity in itself. It also showed that type 2 diabetes in humans is also associated with up-regulation of adipocyte autotaxin expression.


Journal of Biological Chemistry | 2010

Insulin and Insulin-like Growth Factor-1 Receptors Act as Ligand-specific Amplitude Modulators of a Common Pathway Regulating Gene Transcription

Jeremie Boucher; Yu-Hua Tseng; C. Ronald Kahn

Insulin and insulin-like growth factor-1 (IGF-1) act on highly homologous receptors, yet in vivo elicit distinct effects on metabolism and growth. To investigate how the insulin and IGF-1 receptors exert specificity in their biological responses, we assessed their role in the regulation of gene expression using three experimental paradigms: 1) preadipocytes before and after differentiation into adipocytes that express both receptors, but at different ratios; 2) insulin receptor (IR) or IGF1R knock-out preadipocytes that only express the complimentary receptor; and 3) IR/IGF1R double knock-out (DKO) cells reconstituted with the IR, IGF1R, or both. In wild-type preadipocytes, which express predominantly IGF1R, microarray analysis revealed ∼500 IGF-1 regulated genes (p < 0.05). The largest of these were confirmed by quantitative PCR, which also revealed that insulin produced a similar effect, but with a smaller magnitude of response. After differentiation, when IR levels increase and IGF1R decrease, insulin became the dominant regulator of each of these genes. Measurement of the 50 most highly regulated genes by quantitative PCR did not reveal a single gene regulated uniquely via the IR or IGF1R using cells expressing exclusively IGF-1 or insulin receptors. Insulin and IGF-1 dose responses from 1 to 100 nm in WT, IRKO, IGFRKO, and DKO cells re-expressing IR, IGF1R, or both showed that insulin and IGF-1 produced effects in proportion to the concentration of ligand and the specific receptor on which they act. Thus, IR and IGF1R act as identical portals to the regulation of gene expression, with differences between insulin and IGF-1 effects due to a modulation of the amplitude of the signal created by the specific ligand-receptor interaction.

Collaboration


Dive into the Jeremie Boucher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo A. Mori

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo A. Mori

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge