Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy A. Miller is active.

Publication


Featured researches published by Jeremy A. Miller.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


The Journal of Neuroscience | 2008

A Systems Level Analysis of Transcriptional Changes in Alzheimer's Disease and Normal Aging

Jeremy A. Miller; Michael C. Oldham; Daniel H. Geschwind

Alzheimers disease (AD) is a debilitating neurodegenerative disorder affecting millions of elderly individuals worldwide. Advances in the genetics of AD have led to new levels of understanding and treatment opportunities. Here, we used a systems biology approach based on weighted gene coexpression network analysis to determine transcriptional networks in AD. This method permits a higher order depiction of gene expression relationships and identifies modules of coexpressed genes that are functionally related, rather than producing massive gene lists. Using this framework, we characterized the transcriptional network in AD, identifying 12 distinct modules related to synaptic and metabolic processes, immune response, and white matter, nine of which were related to disease progression. We further examined the association of gene expression changes with progression of AD and normal aging, and were able to compare functional modules of genes defined in both conditions. Two biologically relevant modules were conserved between AD and aging, one related to mitochondrial processes such as energy metabolism, and the other related to synaptic plasticity. We also identified several genes that were central, or hub, genes in both aging and AD, including the highly abundant signaling molecule 14.3.3 ζ (YWHAZ), whose role in AD and aging is uncharacterized. Finally, we found that presenilin 1 (PSEN1) is highly coexpressed with canonical myelin proteins, suggesting a role for PSEN1 in aspects of glial-neuronal interactions related to neurodegenerative processes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways

Jeremy A. Miller; Steve Horvath; Daniel H. Geschwind

Because mouse models play a crucial role in biomedical research related to the human nervous system, understanding the similarities and differences between mouse and human brain is of fundamental importance. Studies comparing transcription in human and mouse have come to varied conclusions, in part because of their relatively small sample sizes or underpowered methodologies. To better characterize gene expression differences between mouse and human, we took a systems-biology approach by using weighted gene coexpression network analysis on more than 1,000 microarrays from brain. We find that global network properties of the brain transcriptome are highly preserved between species. Furthermore, all modules of highly coexpressed genes identified in mouse were identified in human, with those related to conserved cellular functions showing the strongest between-species preservation. Modules corresponding to glial and neuronal cells were sufficiently preserved between mouse and human to permit identification of cross species cell-class marker genes. We also identify several robust human-specific modules, including one strongly correlated with measures of Alzheimer disease progression across multiple data sets, whose hubs are poorly-characterized genes likely involved in Alzheimer disease. We present multiple lines of evidence suggesting links between neurodegenerative disease and glial cell types in human, including human-specific correlation of presenilin-1 with oligodendrocyte markers, and significant enrichment for known neurodegenerative disease genes in microglial modules. Together, this work identifies convergent and divergent pathways in mouse and human, and provides a systematic framework that will be useful for understanding the applicability of mouse models for human brain disorders.


Cell Metabolism | 2014

Aerobic Glycolysis in the Human Brain Is Associated with Development and Neotenous Gene Expression

Manu S. Goyal; Michael Hawrylycz; Jeremy A. Miller; Abraham Z. Snyder; Marcus E. Raichle

Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth.


Acta neuropathologica communications | 2015

Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis

Inge R. Holtman; Divya Raj; Jeremy A. Miller; Wandert Schaafsma; Zhuoran Yin; Nieske Brouwer; Paul D. Wes; Thomas Möller; Marie Orre; Willem Kamphuis; Elly M. Hol; Erik Boddeke; Bart J. L. Eggen

IntroductionMicroglia are tissue macrophages of the central nervous system that monitor brain homeostasis and react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared using Weighted Gene Co-expression Network Analysis (WGCNA).ResultsA highly consistent consensus transcriptional profile of up-regulated genes was identified, which prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition, specific signatures for aging, AD, and ALS were identified.ConclusionMicroglia priming induces a highly conserved transcriptional signature with aging- and disease-specific aspects.


Nature Neuroscience | 2015

Canonical genetic signatures of the adult human brain

Michael Hawrylycz; Jeremy A. Miller; Vilas Menon; David Feng; Tim Dolbeare; Angela L. Guillozet-Bongaarts; Anil G. Jegga; Bruce J. Aronow; Chang Kyu Lee; Amy Bernard; Matthew F. Glasser; Donna L. Dierker; Jörg Menche; Aaron Szafer; Forrest Collman; Pascal Grange; Kenneth A. Berman; Stefan Mihalas; Zizhen Yao; Lance Stewart; Albert-László Barabási; Jay Schulkin; John Phillips; Lydia Ng; Chinh Dang; David R. Haynor; Allan R. Jones; David C. Van Essen; Christof Koch; Ed Lein

The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry.


Genome Medicine | 2013

Genes and pathways underlying regional and cell type changes in Alzheimer's disease.

Jeremy A. Miller; Randall L. Woltjer; Jeff M Goodenbour; Steve Horvath; Daniel H. Geschwind

BackgroundTranscriptional studies suggest Alzheimers disease (AD) involves dysfunction of many cellular pathways, including synaptic transmission, cytoskeletal dynamics, energetics, and apoptosis. Despite known progression of AD pathologies, it is unclear how such striking regional vulnerability occurs, or which genes play causative roles in disease progression.MethodsTo address these issues, we performed a large-scale transcriptional analysis in the CA1 and relatively less vulnerable CA3 brain regions of individuals with advanced AD and nondemented controls. In our study, we assessed differential gene expression across region and disease status, compared our results to previous studies of similar design, and performed an unbiased co-expression analysis using weighted gene co-expression network analysis (WGCNA). Several disease genes were identified and validated using qRT-PCR.ResultsWe find disease signatures consistent with several previous microarray studies, then extend these results to show a relationship between disease status and brain region. Specifically, genes showing decreased expression with AD progression tend to show enrichment in CA3 (and vice versa), suggesting transcription levels may reflect a regions vulnerability to disease. Additionally, we find several candidate vulnerability (ABCA1, MT1H, PDK4, RHOBTB3) and protection (FAM13A1, LINGO2, UNC13C) genes based on expression patterns. Finally, we use a systems-biology approach based on WGCNA to uncover disease-relevant expression patterns for major cell types, including pathways consistent with a key role for early microglial activation in AD.ConclusionsThese results paint a picture of AD as a multifaceted disease involving slight transcriptional changes in many genes between regions, coupled with a systemic immune response, gliosis, and neurodegeneration. Despite this complexity, we find that a consistent picture of gene expression in AD is emerging.


Neuron | 2014

A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain

Carol L. Thompson; Lydia Ng; Vilas Menon; Salvador Martinez; Chang-Kyu Lee; Katie J. Glattfelder; Susan M. Sunkin; Alex Henry; Christopher Lau; Chinh Dang; Raquel Garcia-Lopez; Almudena Martinez-Ferre; Ana Pombero; John L.R. Rubenstein; Wayne Wakeman; John G. Hohmann; Nick Dee; Andrew Sodt; Rob Young; Kimberly A. Smith; Thuc-Nghi Nguyen; Jolene Kidney; Leonard Kuan; Andreas Jeromin; Ajamete Kaykas; Jeremy A. Miller; Damon T. Page; Geri Orta; Amy Bernard; Zackery L. Riley

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).


Nature | 2016

A comprehensive transcriptional map of primate brain development

Trygve E. Bakken; Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Rachel A. Dalley; Joshua J. Royall; Tracy Lemon; Sheila Shapouri; Kaylynn Aiona; James M. Arnold; Jeffrey L. Bennett; Darren Bertagnolli; Kristopher Bickley; Andrew F. Boe; Krissy Brouner; Stephanie Butler; Emi J. Byrnes; Shiella Caldejon; Anita Carey; Shelby Cate; Mike Chapin; Jefferey Chen; Nick Dee; Tsega Desta; Tim Dolbeare; Nadia Dotson; Amanda Ebbert

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.

Collaboration


Dive into the Jeremy A. Miller's collaboration.

Top Co-Authors

Avatar

Ed Lein

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Smith

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Trygve E. Bakken

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren Bertagnolli

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Lydia Ng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Michael Hawrylycz

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Rachel A. Dalley

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Rebecca Hodge

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Amy Bernard

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge