Jeremy C. Yeo
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy C. Yeo.
Nature Communications | 2014
Lin Luo; Adam A. Wall; Jeremy C. Yeo; Nicholas D. Condon; Suzanne J. Norwood; Simone M. Schoenwaelder; Kaiwen W. Chen; Shaun P. Jackson; Brendan John Jenkins; Elizabeth L. Hartland; Kate Schroder; Brett M. Collins; Matthew J. Sweet; Jennifer L. Stow
Toll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS) to mount innate immune responses. The TLR4-induced release of pro- and anti-inflammatory cytokines generates robust inflammatory responses, which must then be restrained to avoid disease. New mechanisms for the critical regulation of TLR-induced cytokine responses are still emerging. Here we find TLR4 complexes localized in LPS-induced dorsal ruffles on the surface of macrophages. We discover that the small GTPase Rab8a is enriched in these ruffles and recruits phosphatidylinositol 3-kinase (PI3Kγ) as an effector by interacting directly through its Ras-binding domain. Rab8a and PI3Kγ function to regulate Akt signalling generated by surface TLR4. Rab8a and PI3Kγ do not affect TLR4 endocytosis, but instead regulate mammalian target of rapamycin signalling as a mechanism for biasing the cytokine profile to constrain inflammation in innate immunity.
Molecular Biology of the Cell | 2015
Jeremy C. Yeo; Adam A. Wall; Lin Luo; Jennifer L. Stow
Rab31 recruits APPL2 to regulate phagocytic cup closure and FcγR signaling pathways via production of PI(3,4,5)P3 in macrophages. APPL2 is poised to activate macrophages and act as a counterpoint to APPL1 in FcγR-mediated PI3K/Akt signaling. New locations and roles are found for Rab31 and APPL2 by which they contribute to innate immune functions.
Journal of Immunology | 2015
Chien-Hsiung Yu; Massimo Micaroni; Andreas Puyskens; Thomas E. Schultz; Jeremy C. Yeo; Amanda C. Stanley; Megan Lucas; Jade Kurihara; Karen M. Dobos; Jennifer L. Stow; Antje Blumenthal
Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105−/− macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105−/− macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105−/− macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA–mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105−/− macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105−/− macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton’s tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.
Proteomics | 2014
Lin Luo; Nathan P. King; Jeremy C. Yeo; Alun Jones; Jennifer L. Stow
The study of protein–protein interactions is a major theme in biological disciplines. Pull‐down or affinity‐precipitation assays using GST fusion proteins have become one of the most common and valuable approaches to identify novel binding partners for proteins of interest (bait). Non‐specific binding of prey proteins to the beads or to GST itself, however, inevitably complicates and impedes subsequent analysis of pull‐down results. A variety of measures, each with inherent advantages and limitations, can minimise the extent of the background. This technical brief details and tests a modification of established GST pull‐down protocols. By specifically eluting only the bait (minus the GST tag) and the associated non‐specific binding proteins with a simple, single‐step protease cleavage, a cleaner platform for downstream protein identification with MS is established. We present a proof of concept for this method, as evidenced by a GST pull‐down/MS case study of the small guanosine triphosphatase (GTPase) Rab31 in which: (i) sensitivity was enhanced, (ii) a reduced level of background was observed, (iii) distinguishability of non‐specific contaminant proteins from genuine binders was improved and (iv) a putative new protein–protein interaction was discovered. Our protease cleavage step is readily applicable to all further affinity tag pull‐downs.
BioTechniques | 2013
Jeremy C. Yeo; Adam A. Wall; Jennifer L. Stow; Nicholas A. Hamilton
Phagocytosis--the engulfment of cells and foreign bodies--is an important cellular process in innate immunity, development, and disease. Quantification of various stages of phagocytosis, especially in a rapid screening fashion, is an invaluable tool for elucidating protein function during this process. However, current methods for assessing phagocytosis are largely limited to flow cytometry and manual image-based assays, providing limited information. Here, we present an image-based, semi-automated phagocytosis assay to rapidly quantitate three distinct stages during the early engulfment of opsonized beads. Captured images are analyzed using the image-processing software ImageJ and quantified using a macro. Modifications to this method allowed quantification of phagocytosis only in fluorescently labeled transfected cells. Additionally, the time course of bead internalization could be measured using this approach. The assay could discriminate perturbations to stages of phagocytosis induced by known pharmacological inhibitors of filamentous actin and phosphoinositol-3-kinase. Our methodology offers the ability to automatically categorize large amounts of image data into the three early stages of phagocytosis within minutes, clearly demonstrating its potential value in investigating aberrant phagocytosis when manipulating proteins of interest in drug screens and disease.
Cellular logistics | 2016
Jeremy C. Yeo; Adam A. Wall; Lin Luo; Jennifer L. Stow
The phagocytosis and destruction of pathogens and dead cells by macrophages is important for innate immunity and tissue maintenance. Multiple Rab family GTPases engage effector molecules to coordinate the early stages of phagocytosis, which include rapid changes in actin polymerization, membrane phospholipids, trafficking and the activation of receptors. Defining the spatiotemporal, sequential recruitment of these Rabs is critical for insights into how phagocytosis is initiated and coordinated. Here, we screened GFP-tagged Rabs expressed in fixed and live cells to identify and stratify those recruited to early phagocytic membranes at stages defined by phospholipid transitions. We propose a sequence of Rabs 35, 13, 8a, 8b, 27a, 10, and 31 that precedes and accompanies phagocytic cup closure, followed after closure by recruitment of endosomal Rabs 5a, 5b, 5c, 14, and 11. Reducing the expression of individual Rabs by siRNA knockdown, notably Rabs 35 and 13, disrupts phagocytosis prior to phagocytic cup closure, confirming a known role for Rab35 and revealing anew the involvement of Rab13. The results enhance our understanding of innate immune responses in macrophages by revealing the sequence of Rabs that initiates phagocytosis.
Traffic | 2016
Jeremy C. Yeo; Adam A. Wall; Lin Luo; Nicholas D. Condon; Jennifer L. Stow
Macrophages are activated by contact with pathogens to mount innate immune defenses against infection. Toll‐like receptor 4 (TLR4) at the macrophage surface recognizes and binds bacterial lipopolysaccharide (LPS), setting off signaling and transcriptional events that lead to the secretion of pro‐ and anti‐inflammatory cytokines; these in turn control inflammatory and antimicrobial responses. Although the complex regulatory pathways downstream of TLR4 have been extensively studied, further molecules critical for modulating the resulting cytokine outputs remain to be characterized. Here we establish potential roles for APPL1 and 2 signaling adaptors as regulators of LPS/TLR4‐induced signaling, transcription, and cytokine secretion. APPL1 and 2 are differentially localized to distinct signaling‐competent membrane domains on the surface and in endocytic compartments of LPS‐activated macrophages. By depleting cells of each adaptor respectively we show separate and opposing functions for APPL1 and 2 in Akt and MAPK signaling. Specifically, APPL2 has a dominant role in nuclear translocation of NF‐KB p65 and it serves to constrain the secretion of pro‐ and anti‐inflammatory cytokines. The APPLs, and in particular APPL2, are thus revealed as adaptors with important capacity to modulate inflammatory responses mounted by LPS/TLR4 during infection.
PLOS ONE | 2016
Zewen K. Tuong; Patrick Lau; Ximing Du; Nicholas D. Condon; Joel M. Goode; Tae Gyu Oh; Jeremy C. Yeo; George E. O. Muscat; Jennifer L. Stow
Nuclear hormone receptors have important roles in the regulation of metabolic and inflammatory pathways. The retinoid-related orphan receptor alpha (Rorα)-deficient staggerer (sg/sg) mice display several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia, and increased susceptibility to atherosclerosis. In this study we demonstrate that macrophages from sg/sg mice have increased ability to accumulate lipids and accordingly exhibit larger lipid droplets (LD). We have previously shown that BMMs from sg/sg mice have significantly decreased expression of cholesterol 25-hydroxylase (Ch25h) mRNA, the enzyme that produces the oxysterol, 25-hydroxycholesterol (25HC), and now confirm this at the protein level. 25HC functions as an inverse agonist for RORα. siRNA knockdown of Ch25h in macrophages up-regulates Vldlr mRNA expression and causes increased accumulation of LDs. Treatment with physiological concentrations of 25HC in sg/sg macrophages restored lipid accumulation back to normal levels. Thus, 25HC and RORα signify a new pathway involved in the regulation of lipid homeostasis in macrophages, potentially via increased uptake of lipid which is suggested by mRNA expression changes in Vldlr and other related genes.
Endocrinology | 2013
Zewen K. Tuong; Patrick Lau; Jeremy C. Yeo; Michael A. Pearen; Adam A. Wall; Amanda C. Stanley; Jennifer L. Stow; George E. O. Muscat
We and others have previously demonstrated that congenital deficiency of the nuclear hormone receptor, Rorα1, in staggerer (sg/sg) mice results in resistance to diet-induced obesity and increased insulin sensitivity. Paradoxically, the sg/sg mice are susceptible to atherosclerosis and display impaired innate immunity, underscoring the regulatory links between metabolic disease, inflammation, and susceptibility to infection. Here, we present novel evidence that Rorα1 regulates innate immune function by demonstrating impaired phagocytosis in sg/sg mice. The early stages of Fc-γ receptor-mediated phagocytosis in lipopolysaccharide-activated sg/sg bone marrow-derived macrophages (BMMs) were significantly impaired compared with wild-type cells. Moreover, in sg/sg BMMs, the phagocytic cup membranes had reduced levels of cholesterol. Expression profiling revealed dysregulated expression of genes involved in inflammation and lipid metabolism in sg/sg BMMs. Notably, we identified decreased expression of the mRNA encoding cholesterol 25-hydroxylase (Ch25h), an enzyme that converts cholesterol to 25-hydroxycholesterol (25HC), an oxysterol with emerging roles in immunity. Treatment of sg/sg BMMs with 25HC rescued phagocytosis in a dose-dependent manner, whereas small interfering RNA knockdown of Ch25h mRNA expression in wild-type cells attenuated phagocytosis. Hence, we propose that 25HC is essential for optimizing membrane internalization during phagocytosis and that aberrant Ch25h expression in Rorα1-deficient sg/sg macrophages disrupts phagocytosis. Our studies reveal new roles for Rorα1, Ch25h, and 25HC in phagocytosis. Aberrant 25HC underpins the paradoxical association between insulin sensitivity and impaired innate immunity in Rorα1-deficient mice, heralding a wider and essential role for this oxysterol at the nexus of metabolism and immunity.
Methods in Cell Biology | 2015
Adam A. Wall; Nicholas D. Condon; Jeremy C. Yeo; Nicholas A. Hamilton; Jennifer L. Stow
Recycling endosomes (REs) form an extensive and complex network of subcompartmentalized vesicular and tubular elements that connect with the cell surface and other endosomes in macrophages. As surveillance and defense cells of the innate immune system, macrophages are highly dependent on REs for their active and voluminous cell surface turnover and endocytic, exocytic, and recycling of membrane and cargo. Here we set out three approaches for imaging and analyzing REs in macrophages, based on the expression of fluorescently labeled RE-associated proteins and the uptake of fluorescent cargo. Subcompartments of the REs are identified by co-expression and co-localization analysis of RE associated Rab GTPases. Transferrin is a well-known cargo marker as it recycles through REs and it is compared here to other cargo, revealing how different endocytic routes intersect with REs. We show how the movement of transferrin through REs can be modeled and quantified in live cells. Finally, since phagosomes are a signature organelle for macrophages, and REs fuse with the maturing phagosome, we show imaging of REs with phagosomes using a genetically encoded pH-sensitive SNARE-based probe. Together these approaches provide multiple ways to comprehensively analyze REs and the important roles they play in these immune cells and more broadly in other cell types.