Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy D. Owens is active.

Publication


Featured researches published by Jeremy D. Owens.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event

Noah J. Planavsky; Andrey Bekker; Axel Hofmann; Jeremy D. Owens; Timothy W. Lyons

Carbonates from approximately 2.3–2.1 billion years ago show markedly positive δ13C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ13C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth’s most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ34S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ34S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ34S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2

Jeremy D. Owens; Benjamin C. Gill; Hugh C. Jenkyns; Steven M Bates; Silke Severmann; Marcel M. M. Kuypers; Richard G. Woodfine; Timothy W. Lyons

Significance Oxygen in the atmosphere and ocean rose dramatically about 600 Mya, coinciding with the first proliferation of animals. However, numerous biotic events followed when oxygen concentrations in the younger ocean dipped episodically. The Cretaceous is famous for such episodes, and the most extensive of these oceanic anoxic events occurred 93.9 Mya. Our combined carbon- and sulfur-isotope data indicate that oxygen-free and hydrogen sulfide-rich waters extended across roughly 5% of the global ocean, compared to <<1% today, but with the likelihood that much broader regions were also oxygen challenged. These conditions must have impacted nutrient availability in the ocean and ultimately the spatial and temporal distribution of marine life across a major climatic perturbation. The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian–Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ∼5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ∼30× greater than the small euxinic fraction present today (∼0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia.


Paleoceanography | 2012

Iron isotope and trace metal records of iron cycling in the proto‐North Atlantic during the Cenomanian‐Turonian oceanic anoxic event (OAE‐2)

Jeremy D. Owens; Timothy W. Lyons; Xiaona Li; Kenneth G. MacLeod; Gwenyth Gordon; Marcel M. M. Kuypers; Ariel D. Anbar; Wolfgang Kuhnt; Silke Severmann

[1] The global carbon cycle during the mid-Cretaceous (� 125–88 million years ago, Ma) experienced numerous major perturbations linked to increased organic carbon burial under widespread, possibly basin-scale oxygen deficiency and episodes of euxinia (anoxic and H2S-containing). The largest of these episodes, the Cenomanian-Turonian boundary event (ca. 93.5 Ma), or oceanic anoxic event (OAE) 2, was marked by pervasive deposition of organic-rich, laminated black shales in deep waters and in some cases across continental shelves. This deposition is recorded in a pronounced positive carbon isotope excursion seen ubiquitously in carbonates and organic matter. Enrichments of redox-sensitive, often bioessential trace metals, including Fe and Mo, indicate major shifts in their biogeochemical cycles under reducing conditions that may be linked to changes in primary production. Iron enrichments and bulk Fe isotope compositions track the sources and sinks of Fe in the proto-North Atlantic at seven localities marked by diverse depositional conditions. Included are an ancestral mid-ocean ridge and euxinic, intermittently euxinic, and oxic settings across varying paleodepths throughout the basin. These data yield evidence for a reactive Fe shuttle that likely delivered Fe from the shallow shelf to the deep ocean basin, as well as (1) hydrothermal sources enhanced by accelerated seafloor spreading or emplacement of large igneous province(s) and (2) local-scale Fe remobilization within the sediment column. This study, the first to explore Fe cycling and enrichment patterns on an ocean scale using iron isotope data, demonstrates the complex processes operating on this scale that can mask simple source-sink relationships. The data imply that the proto-North Atlantic received elevated Fe inputs from several sources (e.g., hydrothermal, shuttle and detrital inputs) and that the redox state of the basin was not exclusively euxinic, suggesting previously unknown heterogeneity in depositional conditions and biogeochemical cycling within those settings during OAE-2.


Paleoceanography | 2015

Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2

Xiaoli Zhou; Hugh C. Jenkyns; Jeremy D. Owens; Christopher K. Junium; Xin Yuan Zheng; Bradley B. Sageman; Dalton S. Hardisty; Timothy W. Lyons; Andy Ridgwell; Zunli Lu

Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.


Science Advances | 2017

Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

Chadlin M. Ostrander; Jeremy D. Owens; Sune G. Nielsen

A Tl isotope excursion preserved in shales leading up to OAE-2 provides evidence for progressive bottom water deoxygenation. The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation.


Scientific Reports | 2017

Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event

Theodore R. Them; Benjamin C. Gill; David Selby; Darren R. Gröcke; Richard M. Friedman; Jeremy D. Owens

Chemical weathering consumes atmospheric carbon dioxide through the breakdown of silicate minerals and is thought to stabilize Earth’s long-term climate. However, the potential influence of silicate weathering on atmospheric pCO2 levels on geologically short timescales (103–105 years) remains poorly constrained. Here we focus on the record of a transient interval of severe climatic warming across the Toarcian Oceanic Anoxic Event or T-OAE from an open ocean sedimentary succession from western North America. Paired osmium isotope data and numerical modelling results suggest that weathering rates may have increased by 215% and potentially up to 530% compared to the pre-event baseline, which would have resulted in the sequestration of significant amounts of atmospheric CO2. This process would have also led to increased delivery of nutrients to the oceans and lakes stimulating bioproductivity and leading to the subsequent development of shallow-water anoxia, the hallmark of the T-OAE. This enhanced bioproductivity and anoxia would have resulted in elevated rates of organic matter burial that would have acted as an additional negative feedback on atmospheric pCO2 levels. Therefore, the enhanced weathering modulated by initially increased pCO2 levels would have operated as both a direct and indirect negative feedback to end the T-OAE.


Journal of Analytical Atomic Spectrometry | 2016

Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS

Sune G. Nielsen; Jeremy D. Owens; Tristan J. Horner

We present and verify a new method to measure vanadium isotope ratios using a Thermo Scientific Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) operated in medium mass resolution mode. We collect masses 48 through 53 simultaneously using the L2, L1, Center, H1, H2 and H3 collectors. The Center cup is equipped with a 1012 Ω resistor, H1 is equipped with a 1010 Ω resistor, while the rest of the collectors have standard 1011 Ω resistors. Unlike previous low-resolution methods, the use of medium mass resolution (ΔM/M ∼ 4000) permits separation of V, Ti and Cr isotopes from all interfering molecular species representing combinations of C, N, O, S, Cl, and Ar. We show that the external reproducibility follows a power law function with respect to the number of V+ ions collected and achieve an external reproducibility of ±0.15‰ with total V+ ion beam intensities of ∼1 nA. The separation of interfering molecular species from the V mass spectrum reduces the V requirement for precise isotope data to as little as 200–300 ng V per analysis—a reduction of ∼90% compared with previous methods—making several low-V matrices amenable to V isotope analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction

Theodore R. Them; Benjamin C. Gill; Andrew H. Caruthers; Angela M. Gerhardt; Darren R. Gröcke; Timothy W. Lyons; Selva M. Marroquín; Sune G. Nielsen; João Trabucho Alexandre; Jeremy D. Owens

Significance Declining oxygen contents in today’s oceans highlight the need to better understand ancient, natural marine deoxygenation and associated extinctions. In the Early Jurassic, the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) is associated with significant perturbations to the Earth system, historically defined by carbon isotopes. We reconstructed global oceanic (de)oxygenation using thallium isotopes from two ocean basins that suggest a stepwise decline of oxygen that initiated before and extended well after the classically defined T-OAE interval. This initial deoxygenation occurs with the start of massive volcanism and marine extinctions, while a later shift corresponds to the traditional T-OAE. This emphasizes the need for more nuanced records of ancient environmental and biogeochemical feedbacks that lead to and maintain widespread marine anoxia. For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least 1 million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth’s past and highlight the role of oxygen depletion on past biological evolution.


Geology | 2015

Extreme eolian delivery of reactive iron to late Paleozoic icehouse seas

Sohini Sur; Jeremy D. Owens; Gerilyn S. Soreghan; Timothy W. Lyons; Robert Raiswell; Nicholas G. Heavens; Natalie M. Mahowald

The biogeochemical impacts of iron-rich dust to the oceans are known for Earth’s recent record but unexplored for deep time, despite recognition of large ancient dust fluxes, particularly during the late Paleozoic. We report a unique Fe relationship for Upper Pennsylvanian mudrock of eolian origin that records lowstand (glacial) conditions within a carbonate buildup of western equatorial Pangaea (western United States) well removed from other detrital inputs. Here, reactive Fe unambiguously linked to dust is enriched without a corresponding increase in total Fe. More broadly, data from thick coeval loess deposits of western equatorial Pangaea show the same marked enrichment in reactive Fe. This enrichment—atypical compared to modern marine, fluvial, glacial, loess, and soil sediments—suggests an enhancement of the reactivity of the internal Fe pool that increased the bioavailability of the Fe for marine primary production. Regardless of the mechanism behind this enhancement, our data in combination with other evidence for high dust fluxes imply delivery of extraordinarily large amounts of biogeochemically reactive Fe to glacial-stage late Paleozoic seas, and modeling of this indicates major impacts on carbon cycling and attendant climatic feedbacks.


Geobiology | 2018

Tracking the rise of eukaryotes to ecological dominance with zinc isotopes

Terry T. Isson; Gordon D. Love; Christopher L. Dupont; Christopher T. Reinhard; Alex J. Zumberge; Dan Asael; Bleuenn Gueguen; John P. McCrow; Ben C. Gill; Jeremy D. Owens; Robert H. Rainbird; Alan D. Rooney; Mingyu Zhao; Eva Elisabeth Stueeken; Kurt O. Konhauser; Seth G. John; Timothy W. Lyons; Noah J. Planavsky

The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earths history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records.

Collaboration


Dive into the Jeremy D. Owens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel D. Anbar

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sune G. Nielsen

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dalton S. Hardisty

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge