Jérémy Fauconnier
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérémy Fauconnier.
Human Molecular Genetics | 2012
Nathalie Roux-Buisson; Marine Cacheux; Anne Fourest-Lieuvin; Jérémy Fauconnier; Julie Brocard; Isabelle Denjoy; Philippe Durand; Pascale Guicheney; Florence Kyndt; Antoine Leenhardt; Hervé Le Marec; V. Lucet; Philippe Mabo; Vincent Probst; Nicole Monnier; Pierre F. Ray; Elodie Santoni; Pauline Trémeaux; Alain Lacampagne; Julien Fauré; Joël Lunardi; Isabelle Marty
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease so far related to mutations in the cardiac ryanodine receptor (RYR2) or the cardiac calsequestrin (CASQ2) genes. Because mutations in RYR2 or in CASQ2 are not retrieved in all CPVT cases, we searched for mutations in the physiological protein partners of RyR2 and CSQ2 in a large cohort of CPVT patients with no detected mutation in these two genes. Based on a candidate gene approach, we focused our investigations on triadin and junctin, two proteins that link RyR2 and CSQ2. Mutations in the triadin (TRDN) and in the junctin (ASPH) genes were searched in a cohort of 97 CPVT patients. We identified three mutations in triadin which cosegregated with the disease on a recessive mode of transmission in two families, but no mutation was found in junctin. Two TRDN mutations, a 4 bp deletion and a nonsense mutation, resulted in premature stop codons; the third mutation, a p.T59R missense mutation, was further studied. Expression of the p.T59R mutant in COS-7 cells resulted in intracellular retention and degradation of the mutant protein. This was confirmed after in vivo expression of the mutant triadin in triadin knock-out mice by viral transduction. In this work, we identified TRDN as a new gene responsible for an autosomal recessive form of CPVT. The mutations identified in the two families lead to the absence of the protein, thereby demonstrating the importance of triadin for the normal function of the cardiac calcium release complex in humans.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jérémy Fauconnier; Jérôme Thireau; Steven Reiken; Cécile Cassan; Sylvain Richard; Stefan Matecki; Andrew R. Marks; Alain Lacampagne
Patients with Duchenne muscular dystrophy (DMD) have a progressive dilated cardiomyopathy associated with fatal cardiac arrhythmias. Electrical and functional abnormalities have been attributed to cardiac fibrosis; however, electrical abnormalities may occur in the absence of overt cardiac histopathology. Here we show that structural and functional remodeling of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR2) occurs in the mdx mouse model of DMD. RyR2 from mdx hearts were S-nitrosylated and depleted of calstabin2 (FKBP12.6), resulting in “leaky” RyR2 channels and a diastolic SR Ca2+ leak. Inhibiting the depletion of calstabin2 from the RyR2 complex with the Ca2+ channel stabilizer S107 (“rycal”) inhibited the SR Ca2+ leak, inhibited aberrant depolarization in isolated cardiomyocytes, and prevented arrhythmias in vivo. This suggests that diastolic SR Ca2+ leak via RyR2 due to S-nitrosylation of the channel and calstabin2 depletion from the channel complex likely triggers cardiac arrhythmias. Normalization of the RyR2-mediated diastolic SR Ca2+ leak prevents fatal sudden cardiac arrhythmias in DMD.
American Journal of Pathology | 2012
Marion Pauly; Frédéric N. Daussin; Yan Burelle; Tong Li; Richard Godin; Jérémy Fauconnier; Christelle Koechlin-Ramonatxo; Gérald Hugon; Alain Lacampagne; Marjorie Coisy-Quivy; Feng Liang; Sabah N. A. Hussain; Stefan Matecki; Basil J. Petrof
Duchenne muscular dystrophy (DMD) is characterized by myofiber death from apoptosis or necrosis, leading in many patients to fatal respiratory muscle weakness. Among other pathological features, DMD muscles show severely deranged metabolic gene regulation and mitochondrial dysfunction. Defective mitochondria not only cause energetic deficiency, but also play roles in promoting myofiber atrophy and injury via opening of the mitochondrial permeability transition pore. Autophagy is a bulk degradative mechanism that serves to augment energy production and eliminate defective mitochondria (mitophagy). We hypothesized that pharmacological activation of AMP-activated protein kinase (AMPK), a master metabolic sensor in cells and on-switch for the autophagy-mitophagy pathway, would be beneficial in the mdx mouse model of DMD. Treatment of mdx mice for 4 weeks with an established AMPK agonist, AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside), potently triggered autophagy in the mdx diaphragm without inducing muscle fiber atrophy. In AICAR-treated mdx mice, the exaggerated sensitivity of mdx diaphragm mitochondria to calcium-induced permeability transition pore opening was restored to normal levels. There were associated improvements in mdx diaphragm histopathology and in maximal force-generating capacity, which were not linked to increased mitochondrial biogenesis or up-regulated utrophin expression. These findings suggest that agonists of AMPK and other inducers of the autophagy-mitophagy pathway can help to promote the elimination of defective mitochondria and may thus serve as useful therapeutic agents in DMD.
Diabetes | 2007
Jérémy Fauconnier; Daniel C. Andersson; Shi-Jin Zhang; Johanna T. Lanner; Rolf Wibom; Abram Katz; Joseph D. Bruton; Håkan Westerblad
Obesity and insulin resistance are associated with enhanced fatty acid utilization, which may play a central role in diabetic cardiomyopathy. We now assess the effect of the saturated fatty acid palmitate (1.2 mmol/l) on Ca2+ handling, cell shortening, and mitochondrial production of reactive oxygen species (ROS) in freshly isolated ventricular cardiomyocytes from normal (wild-type) and obese, insulin-resistant ob/ob mice. Cardiomyocytes were electrically stimulated at 1 Hz, and the signal of fluorescent indicators was measured with confocal microscopy. Palmitate decreased the amplitude of cytosolic Ca2+ transients (measured with fluo-3), the sarcoplasmic reticulum Ca2+ load, and cell shortening by ∼20% in wild-type cardiomyocytes; these decreases were prevented by the general antioxidant N-acetylcysteine. In contrast, palmitate accelerated Ca2+ transients and increased cell shortening in ob/ob cardiomyocytes. Application of palmitate rapidly dissipated the mitochondrial membrane potential (measured with tetra-methyl rhodamine-ethyl ester) and increased the mitochondrial ROS production (measured with MitoSOX Red) in wild-type but not in ob/ob cardiomyocytes. In conclusion, increased saturated fatty acid levels impair cellular Ca2+ handling and contraction in a ROS-dependent manner in normal cardiomyocytes. Conversely, high fatty acid levels may be vital to sustain cardiac Ca2+ handling and contraction in obesity and insulin-resistant conditions.
Circulation | 2013
Melanie Paillard; Emily Tubbs; Pierre-Alain Thiebaut; Ludovic Gomez; Jérémy Fauconnier; Claire Crola Da Silva; Geoffrey Teixeira; Nathan Mewton; Elise Belaidi; Annie Durand; Maryline Abrial; Alain Lacampagne; Jennifer Rieusset; Michel Ovize
Background— Under physiological conditions, Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria might occur at least in part at contact points between the 2 organelles and involves the VDAC1/Grp75/IP3R1 complex. Accumulation of Ca2+ into the mitochondrial matrix may activate the mitochondrial chaperone cyclophilin D (CypD) and trigger permeability transition pore opening, whose role in ischemia/reperfusion injury is well recognized. We questioned here whether the transfer of Ca2+ from ER to mitochondria might play a role in cardiomyocyte death after hypoxia-reoxygenation. Methods and Results— We report that CypD interacts with the VDAC1/Grp75/IP3R1 complex in cardiomyocytes. Genetic or pharmacological inhibition of CypD in both H9c2 cardiomyoblasts and adult cardiomyocytes decreased the Ca2+ transfer from ER to mitochondria through IP3R under normoxic conditions. During hypoxia-reoxygenation, the interaction between CypD and the IP3R1 Ca2+ channeling complex increased concomitantly with mitochondrial Ca2+ content. Inhibition of either CypD, IP3R1, or Grp75 decreased protein interaction within the complex, attenuated mitochondrial Ca2+ overload, and protected cells from hypoxia-reoxygenation. Genetic or pharmacological inhibition of CypD provided a similar effect in adult mice cardiomyocytes. Disruption of ER-mitochondria interaction via the downregulation of Mfn2 similarly reduced the interaction between CypD and the IP3R1 complex and protected against hypoxia-reoxygenation injury. Conclusions— Our data (1) point to a new role of CypD at the ER-mitochondria interface and (2) suggest that decreasing ER-mitochondria interaction at reperfusion can protect cardiomyocytes against lethal reperfusion injury through the reduction of mitochondrial Ca2+ overload via the CypD/VDAC1/Grp75/IP3R1 complex.
Circulation | 2011
Jean-Sébastien Hulot; Jérémy Fauconnier; Deepak Ramanujam; Antoine H. Chaanine; Fleur Cohen Aubart; Yassine Sassi; Sabine Merkle; Olivier Cazorla; Aude Ouillé; Morgan Dupuis; Lahouaria Hadri; Dongtak Jeong; Silke Mühlstedt; Joachim P. Schmitt; Attila Braun; Ludovic Benard; Youakim Saliba; Bernhard Laggerbauer; Bernhard Nieswandt; Alain Lacampagne; Roger J. Hajjar; Anne-Marie Lompré; Stefan Engelhardt
Background Cardiomyocytes (CM) utilize Ca2+ not only in excitation-contraction coupling (ECC), but also as a signaling molecule promoting for example cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in CM in the presence of the rapid and large Ca2+ fluctuations that occur during ECC. A potential route is store-operated Ca2+ entry (SOCE), a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). SOCE can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+-entry with respect to cardiac hypertrophy in vitro and in vivo.Background— Cardiomyocytes use Ca2+ not only in excitation-contraction coupling but also as a signaling molecule promoting, for example, cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in cardiomyocytes in the presence of the rapid and large Ca2+ fluctuations that occur during excitation-contraction coupling. A potential route is store-operated Ca2+ entry, a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). Store-operated Ca2+ entry can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+ entry with respect to cardiac hypertrophy in vitro and in vivo. Methods and Results— Consistent with earlier reports, we found drug-inducible store-operated Ca2+ entry in neonatal rat cardiomyocytes, which was dependent on STIM1. Although this STIM1-dependent, drug-inducible store-operated Ca2+ entry was only marginal in adult cardiomyocytes isolated from control hearts, it increased significantly in cardiomyocytes isolated from adult rats that had developed compensated cardiac hypertrophy after abdominal aortic banding. Moreover, we detected an inwardly rectifying current in hypertrophic cardiomyocytes that occurs under native conditions (ie, in the absence of drug-induced store depletion) and is dependent on STIM1. By manipulating its expression, we found STIM1 to be both sufficient and necessary for cardiomyocyte hypertrophy in vitro and in the adult heart in vivo. Stim1 silencing by adeno-associated viruses of serotype 9–mediated gene transfer protected rats from pressure overload–induced cardiac hypertrophy. Conclusion— By controlling a previously unrecognized sarcolemmal current, STIM1 promotes cardiac hypertrophy.
The Journal of Physiology | 2011
Daniel C. Andersson; Jérémy Fauconnier; Takashi Yamada; Alain Lacampagne; Shi-Jin Zhang; Abram Katz; Håkan Westerblad
Non‐technical summary When under stress, the heart beat becomes stronger, in part due to enhanced fluxes of Ca2+ at the level of the cardiac cell. It is known that this effect is mediated by activation of β‐receptors on the cardiac cell surface. This leads to modifications of intracellular proteins that in turn increase the flux of Ca2+ within the cell. In this study we show that activation of β‐receptors increases the production of reactive oxygen species (ROS) in the heart cell. These ROS generate enhanced Ca2+ fluxes and more vigorous contraction. This finding shows a new cellular signalling route for regulating the power of the heart beat and might contribute to our understanding of diseases with defective cardiac contraction, such as heart failure.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jérémy Fauconnier; Albano C. Meli; Jérôme Thireau; Stéphanie Roberge; Jian Shan; Yassine Sassi; Steven Reiken; Jean-Michel Rauzier; Alexandre Marchand; David Chauvier; Cécile Cassan; Christine Crozier; Patrice Bideaux; Anne-Marie Lompré; Etienne Jacotot; Andrew R. Marks; Alain Lacampagne
Myocardial ischemic disease is the major cause of death worldwide. After myocardial infarction, reperfusion of infracted heart has been an important objective of strategies to improve outcomes. However, cardiac ischemia/reperfusion (I/R) is characterized by inflammation, arrhythmias, cardiomyocyte damage, and, at the cellular level, disturbance in Ca2+ and redox homeostasis. In this study, we sought to determine how acute inflammatory response contributes to reperfusion injury and Ca2+ homeostasis disturbance after acute ischemia. Using a rat model of I/R, we show that circulating levels of TNF-α and cardiac caspase-8 activity were increased within 6 h of reperfusion, leading to myocardial nitric oxide and mitochondrial ROS production. At 1 and 15 d after reperfusion, caspase-8 activation resulted in S-nitrosylation of the RyR2 and depletion of calstabin2 from the RyR2 complex, resulting in diastolic sarcoplasmic reticulum (SR) Ca2+ leak. Pharmacological inhibition of caspase-8 before reperfusion with Q-LETD-OPh or prevention of calstabin2 depletion from the RyR2 complex with the Ca2+ channel stabilizer S107 (“rycal”) inhibited the SR Ca2+ leak, reduced ventricular arrhythmias, infarct size, and left ventricular remodeling after 15 d of reperfusion. TNF-α–induced caspase-8 activation leads to leaky RyR2 channels that contribute to myocardial remodeling after I/R. Thus, early prevention of SR Ca2+ leak trough normalization of RyR2 function is cardioprotective.
Diabetes | 2006
Johanna T. Lanner; Abram Katz; Pasi Tavi; Marie E. Sandström; Shi-Jin Zhang; Charlott Wretman; Stephen James; Jérémy Fauconnier; Jan Lännergren; Joseph D. Bruton; Håkan Westerblad
The involvement of Ca2+ in insulin-mediated glucose uptake is uncertain. We measured Ca2+ influx (as Mn2+ quenching or Ba2+ influx) and 2-deoxyglucose (2-DG) uptake in single muscle fibers isolated from limbs of adult mice; 2-DG uptake was also measured in isolated whole muscles. Exposure to insulin increased the Ca2+ influx in single muscle cells. Ca2+ influx in the presence of insulin was decreased by 2-aminoethoxydiphenyl borate (2-APB) and increased by the membrane-permeable diacylglycerol analog 1-oleyl-2-acetyl-sn-glycerol (OAG), agents frequently used to block and activate, respectively, nonselective cation channels. Maneuvers that decreased Ca2+ influx in the presence of insulin also decreased 2-DG uptake, whereas increased Ca2+ influx was associated with increased insulin-mediated glucose uptake in isolated single cells and whole muscles from both normal and insulin-resistant obese ob/ob mice. 2-APB and OAG affected neither basal nor hypoxia- or contraction-mediated 2-DG uptake. 2-APB did not inhibit the insulin-mediated activation of protein kinase B or extracellular signal–related kinase 1/2 in whole muscles. In conclusion, alterations in Ca2+ influx specifically modulate insulin-mediated glucose uptake in both normal and insulin-resistant skeletal muscle. Moreover, the present results indicate that Ca2+ acts late in the insulin signaling pathway, for instance, in the GLUT4 translocation to the plasma membrane.
Basic Research in Cardiology | 2002
Jean-Pierre Benitah; Ana M. Gómez; Jérémy Fauconnier; B. G. Kerfant; Emeline Perrier; Guy Vassort; Sylvain Richard
Abstract The L-type Ca2+ current (ICa-L) plays a key role in the cardiac excitation-contraction (E-C) coupling. Thus, it is a major target for many transmitters and hormones modulating cardiac function and, therefore, for pharmacological drugs to regulate inotropy. Ca2+ (and other) ion currents are commonly studied in animal tissues for practical reasons. Investigations in human cardiomyocytes started extensively only ten years ago with the development of patch-clamp techniques, enzymatic cell dissociation procedures, and surgical techniques. These studies have already provided valuable information concerning the nature, biophysics, pharmacology and regulation of human cardiac ionic currents in normal and diseased tissues. Interesting advances have been made to understand the role of ICa-L in the development of chronic atrial fibrillation (AF). Alterations of single channel activity and regulation of macroscopic ICa-L have also been found in heart failure (HF), although some of the data are divergent and puzzling. The T-type Ca2+ current (ICa-T) has never been recorded in human cardiomyocytes. After a rapid overview of the basic properties of human cardiac Ca2+ currents, we focus on selected aspects of pathophysiology that are still unsolved.