Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy G. Carlton is active.

Publication


Featured researches published by Jeremy G. Carlton.


Journal of Cell Science | 2006

The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport

Anna Rutherford; Colin J. Traer; Thomas Wassmer; Krupa Pattni; Miriam V. Bujny; Jeremy G. Carlton; Harald Stenmark; Peter J. Cullen

The yeast gene fab1 and its mammalian orthologue Pip5k3 encode the phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinases Fab1p and PIKfyve, respectively, enzymes that generates phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2]. A shared feature of fab1Δ yeast cells and mammalian cells overexpressing a kinase-dead PIKfyve mutant is the formation of a swollen vacuolar phenotype: a phenotype that is suggestive of a conserved function for these enzymes and their product, PtdIns(3,5)P2, in the regulation of endomembrane homeostasis. In the current study, fixed and live cell imaging has established that, when overexpressed at low levels in HeLa cells, PIKfyve is predominantly associated with dynamic tubular and vesicular elements of the early endosomal compartment. Moreover, through the use of small interfering RNA, it has been shown that suppression of PIKfyve induces the formation of swollen endosomal structures that maintain their early and late endosomal identity. Although internalisation, recycling and degradative sorting of receptors for epidermal growth factor and transferrin was unperturbed in PIKfyve suppressed cells, a clear defect in endosome to trans-Golgi-network (TGN) retrograde traffic was observed. These data argue that PIKfyve is predominantly associated with the early endosome, from where it regulates retrograde membrane trafficking to the TGN. It follows that the swollen endosomal phenotype observed in PIKfyve-suppressed cells results primarily from a reduction in retrograde membrane fission rather than a defect in multivesicular body biogenesis.


Science | 2012

ESCRT-III Governs the Aurora B-Mediated Abscission Checkpoint Through CHMP4C

Jeremy G. Carlton; Anna Caballe; Monica Agromayor; Magdalena Kloc; Juan Martin-Serrano

To Cut or Not to Cut During animal cell division, the final separation of daughter cells requires ESCRT-III (endosomal sorting complex required for transport III), the core membrane scission machinery. Carlton et al. (p. 220, published online 15 March; see the Perspective by Petronczki and Uhlmann) report that ESCRT-III modulates abscission timing through one of its subunits, CHMP4C. Depletion of CHMP4C results in faster resolution of the midbody, the cytoplasmic bridge that connects the daughter cells at the end of cytokinesis. This phenotype correlates with a differential spatiotemporal distribution of CHMP4C at the midbody. As CHMP4C is essential for activating the Aurora B–mediated abscission checkpoint, consequently, depletion of CHMP4C results in the accumulation of genetic damage. Thus, the ESCRT machinery protects the cell against genetic damage by coordinating its cytokinetic activity with the abscission checkpoint. The membrane scission and cytokinesis ESCRT machinery may help to protect against genetic damage. The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily conserved role in cytokinetic abscission, the final step of cell division where daughter cells are physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C), a human ESCRT-III subunit, is involved in abscission timing. This function correlated with its differential spatiotemporal distribution during late stages of cytokinesis. Accordingly, CHMP4C functioned in the Aurora B–dependent abscission checkpoint to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. CHMP4C engaged the chromosomal passenger complex (CPC) via interaction with Borealin, which suggested a model whereby CHMP4C inhibits abscission upon phosphorylation by Aurora B. Thus, the ESCRT machinery may protect against genetic damage by coordinating midbody resolution with the abscission checkpoint.


Nature | 2015

ESCRT-III controls nuclear envelope reformation

Yolanda Olmos; Lorna Hodgson; Judith Mantell; Paul Verkade; Jeremy G. Carlton

During telophase, the nuclear envelope (NE) reforms around daughter nuclei to ensure proper segregation of nuclear and cytoplasmic contents. NE reformation requires the coating of chromatin by membrane derived from the endoplasmic reticulum, and a subsequent annular fusion step to ensure that the formed envelope is sealed. How annular fusion is accomplished is unknown, but it is thought to involve the p97 AAA-ATPase complex and bears a topological equivalence to the membrane fusion event that occurs during the abscission phase of cytokinesis. Here we show that the endosomal sorting complex required for transport-III (ESCRT-III) machinery localizes to sites of annular fusion in the forming NE in human cells, and is necessary for proper post-mitotic nucleo-cytoplasmic compartmentalization. The ESCRT-III component charged multivesicular body protein 2A (CHMP2A) is directed to the forming NE through binding to CHMP4B, and provides an activity essential for NE reformation. Localization also requires the p97 complex member ubiquitin fusion and degradation 1 (UFD1). Our results describe a novel role for the ESCRT machinery in cell division and demonstrate a conservation of the machineries involved in topologically equivalent mitotic membrane remodelling events.


Current Topics in Microbiology and Immunology | 2004

Membrane targeting by pleckstrin homology domains.

Ge Cozier; Jeremy G. Carlton; D Bouyoucef; Peter J. Cullen

Pleckstrin homology (PH) domains are small modular domains that occur once, or occasionally several times, in a large variety of signalling proteins. In a number of instances, PH domains act to target their host protein to the cytosolic face of cellular membranes through an ability to associate with phosphoinositides. In this review, we discuss recent advances in our understanding of PH domain function. In particular we describe the structural aspects of how PH domains have evolved to bind various phosphoinositides, how PH domains regulate phosphoinositide-mediated association to plasma and internals membranes, and finally raise the issue of PH domains in protein:protein interactions and the allosteric regulation of their host protein.


Biochemical Society Transactions | 2009

The ESCRT machinery: new functions in viral and cellular biology

Jeremy G. Carlton; Juan Martin-Serrano

The ESCRT (endosomal sorting complex required for transport) machinery consists of a number of cytosolic proteins that make up three functional subcomplexes: ESCRT-I, ESCRT-II and ESCRT-III. These proteins function in multivesicular body formation and cell division and are co-opted by enveloped retroviruses to facilitate viral egress. Analysis of these functions may help illuminate conserved mechanisms of ESCRT function.


eLife | 2015

ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

Anna Caballe; Dawn M Wenzel; Monica Agromayor; Steven L. Alam; Jack J. Skalicky; Magdalena Kloc; Jeremy G. Carlton; Leticia Labrador; Wesley I. Sundquist; Juan Martin-Serrano

The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI: http://dx.doi.org/10.7554/eLife.06547.001


Current Opinion in Cell Biology | 2016

The ESCRT machinery: new roles at new holes

Yolanda Olmos; Jeremy G. Carlton

The ESCRT machinery drives a diverse collection of membrane remodeling events, including multivesicular body biogenesis, release of enveloped retroviruses and both reformation of the nuclear envelope and cytokinetic abscission during mitotic exit. These events share the requirement for a topologically equivalent membrane remodeling for their completion and the cells deployment of the ESCRT machinery in these different contexts highlights its functionality as a transposable membrane-fission machinery. Here, we will examine recent data describing ESCRT-III dependent membrane remodeling and explore new roles for the ESCRT-III complex at the nuclear envelope.


Biochemical Society Transactions | 2010

The ESCRT machinery: a cellular apparatus for sorting and scission

Jeremy G. Carlton

The ESCRT (endosomal sorting complex required for transport) machinery is a group of multisubunit protein complexes conserved across phyla that are involved in a range of diverse cellular processes. ESCRT proteins regulate the biogenesis of MVBs (multivesicular bodies) and the sorting of ubiquitinated cargos on to ILVs (intraluminal vesicles) within these MVBs. These proteins are also recruited to sites of retroviral particle assembly, where they provide an activity that allows release of these retroviruses. More recently, these proteins have been shown to be recruited to the intracellular bridge linking daughter cells at the end of mitosis, where they act to ensure the separation of these cells through the process of cytokinesis. Although these cellular processes are diverse, they share a requirement for a topologically unique membrane-fission step for their completion. Current models suggest that the ESCRT machinery catalyses this membrane fission.


Current Biology | 2016

Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation

Yolanda Olmos; Anna Perdrix-Rosell; Jeremy G. Carlton

Summary In addition to its role in membrane abscission during cytokinesis, viral budding, endosomal sorting, and plasma membrane repair [1], the endosomal sorting complex required for transport-III (ESCRT-III) machinery has recently been shown to seal holes in the reforming nuclear envelope (NE) during mitotic exit [2, 3]. ESCRT-III also acts during interphase to repair the NE upon migration-induced rupture [4, 5], highlighting its key role as an orchestrator of membrane integrity at this organelle. While NE localization of ESCRT-III is dependent upon the ESCRT-III component CHMP7 [3], it is unclear how this complex is able to engage nuclear membranes. Here we show that the N terminus of CHMP7 acts as a novel membrane-binding module. This membrane-binding ability allows CHMP7 to bind to the ER, an organelle continuous with the NE, and it provides a platform to direct NE recruitment of ESCRT-III during mitotic exit. CHMP7’s N terminus comprises tandem Winged-Helix domains [6], and, by using homology modeling and structure-function analysis, we identify point mutations that disrupt membrane binding and prevent both ER localization of CHMP7 and its subsequent enrichment at the reforming NE. These mutations also prevent assembly of downstream ESCRT-III components at the reforming NE and proper establishment of post-mitotic nucleo-cytoplasmic compartmentalization. These data identify a novel membrane-binding activity within an ESCRT-III subunit that is essential for post-mitotic nuclear regeneration.


Journal of Cell Science | 2013

SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome.

Chris M. Danson; Edward J. Brown; Oliver J Hemmings; Ian J. McGough; Sam Yarwood; Kate J. Heesom; Jeremy G. Carlton; Juan Martin-Serrano; Margaret T May; Paul Verkade; Peter J. Cullen

Summary Sorting nexins (SNXs) are key regulators of the endosomal network. In designing an RNAi-mediated loss-of-function screen, we establish that of 30 human SNXs only SNX3, SNX5, SNX9, SNX15 and SNX21 appear to regulate EGF receptor degradative sorting. Suppression of SNX15 results in a delay in receptor degradation arising from a defect in movement of newly internalised EGF-receptor-labelled vesicles into early endosomes. Besides a phosphatidylinositol 3-phosphate- and PX-domain-dependent association to early endosomes, SNX15 also associates with clathrin-coated pits and clathrin-coated vesicles by direct binding to clathrin through a non-canonical clathrin-binding box. From live-cell imaging, it was identified that the activated EGF receptor enters distinct sub-populations of SNX15- and APPL1-labelled peripheral endocytic vesicles, which do not undergo heterotypic fusion. The SNX15-decorated receptor-containing sub-population does, however, undergo direct fusion with the Rab5-labelled early endosome. Our data are consistent with a model in which the EGF receptor enters the early endosome following clathrin-mediated endocytosis through at least two parallel pathways: maturation through an APPL1-intermediate compartment and an alternative more direct fusion between SNX15-decorated endocytic vesicles and the Rab5-positive early endosome.

Collaboration


Dive into the Jeremy G. Carlton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge