Jeremy J. Weinman
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy J. Weinman.
Proteomics | 2001
Ulrike Mathesius; Guido Keijzers; Siria H. A. Natera; Jeremy J. Weinman; Michael A. Djordjevic; Barry G. Rolfe
We have established a proteome reference map for Medicago truncatula root proteins using two‐dimensional gel electrophoresis combined with peptide mass fingerprinting to aid the dissection of nodulation and root developmental pathways by proteome analysis. M. truncatula has been chosen as a model legume for the study of nodulation‐related genes and proteins. Over 2500 root proteins could be displayed reproducibly across an isoelectric focussing range of 4–7. We analysed 485 proteins by peptide mass fingerprinting, and 179 of those were identified by matching against the current M. truncatula expressed sequence tag (EST) database containing DNA sequences of approximately 105 000 ESTs. Matching the EST sequences to available plant DNA sequences by BLAST searches enabled us to predict protein function. The use of the EST database for peptide identification is discussed. The majority of identified proteins were metabolic enzymes and stress response proteins, and 44% of proteins occurred as isoforms, a result that could not have been predicted from sequencing data alone. We identified two nodulins in uninoculated root tissue, supporting evidence for a role of nodulins in normal plant development. This proteome map will be updated continuously (http://semele.anu.edu.au/2d/2d.html) and will be a powerful tool for investigating the molecular mechanisms of root symbioses in legumes.
Molecular & Cellular Proteomics | 2006
Nijat Imin; Tursun Kerim; Jeremy J. Weinman; Barry G. Rolfe
Male reproductive development in rice is very sensitive to various forms of environmental stresses including low temperature. A few days of cold treatment (<20 °C) at the young microspore stage induce severe pollen sterility and thus large grain yield reductions. To investigate this phenomenon, anther proteins at the early stages of microspore development, with or without cold treatment at 12 °C, were extracted, separated by two-dimensional gel electrophoresis, and compared. The cold-sensitive cultivar Doongara and the relatively cold-tolerant cultivar HSC55 were used. The abundance of 37 anther proteins was changed more than 2-fold after 1, 2, and 4 days of cold treatment in cv. Doongara. Among them, one protein was newly induced, 32 protein spots were up-regulated, and four protein spots were down-regulated. Of these 37 protein spots, we identified two anther-specific proteins (putative lipid transfer protein and Osg6B) and a calreticulin that were down-regulated and a cystine synthase, a β-6 subunit of the 20 S proteasome, an H protein of the glycine cleavage system, cytochrome c oxidase subunit VB, an osmotin protein homologue, a putative 6-phosphogluconolactonase, a putative adenylate kinase, a putative cysteine proteinase inhibitor, ribosomal protein S12E, a caffeoyl-CoA O-methyltransferase, and a monodehydroascorbate reductase that were up-regulated. Identification of these proteins is available upon request. Accumulation of these proteins did not vary greatly after cold treatment in panicles of cv. Doongara or in the anthers of the cv. HSC55. The newly induced protein named Oryza sativa cold-induced anther protein (OsCIA) was identified as an unknown protein. The OsCIA protein was detected in panicles, leaves, and seedling tissues under normal growth conditions. Quantitative real time RT-PCR analysis of OsCIA mRNA expression showed no significant change between low temperature-treated and untreated plants. A possible regulatory role for the newly induced protein is proposed.
Molecular Plant-microbe Interactions | 1998
Ulrike Mathesius; Cathy Bayliss; Jeremy J. Weinman; Helmi R. M. Schlaman; Herman P. Spaink; Barry G. Rolfe; Margaret E. McCully; Michael A. Djordjevic
We examined the site-specific induction of the flavonoid pathway before and during nodule initiation in white clover with transgenic plants, fluorescence microscopy, and microspectrofluorometry to test if flavonoids play a role in nodule organogenesis. A chalcone synthase regulated βglucuronidase (GUS) transgene (CHS3:gusA) was upregulated from 3 h post inoculation (p.i.) until cell division (around 40 h p.i.) in inner cortex cells underlying the inoculation site. Intracellular fluorescence occurred in vacuoles of those inner cortex cells from 13 h p.i. until the fluorescent cells divided. Fluorescence emission spectra of contents of individual fluorescing cortex cells were measured in situ and compared with emission spectra of compounds purified from root extracts. The fluorescing compound located in cells of the inner cortex after Rhizobium leguminosarum bv. trifolii infection was identified as a water-soluble derivative of 7,4′-dihydroxyflavone. Nodule primordium cells contained a different fluorescent compound, identified as the isoflavonoid formononetin. CHS3:gusA expression and flavonoid accumulation were only induced in inner cortex cells by a nodulating Rhizobium strain and by clover-specific lipo-chitinoligosaccharides, but not by non-nodulating rhizobia. Fluorescence was also induced by compatible rhizobia in other legumes such as alfalfa, pea, and siratro in the cells that participate in nodule initiation. Our results show that fluorescent flavonoids are useful markers in nodule organogenesis in clover and may have direct roles in nodule formation.
Proteomics | 2001
Nijat Imin; Tursun Kerim; Jeremy J. Weinman; Barry G. Rolfe
In combination with two‐dimensional polyacrylamide gel electrophoresis (2‐DE) protein mapping and mass spectrometry analysis, the pattern of gene expression in specific tissues at a specific stage can be displayed and characterised. We used this approach for rice (Oryza sativa L. cultivar Doongara) to display and assign identity to proteins in the anthers at the young microspore stage. Over 4000 anther proteins in the pI range of 4–11 and molecular mass range of 6–122 kDa were reproducibly resolved after silver staining, representing about 10% of the estimated total genomic output of rice. Two hundred and seventy‐three protein spots have been extracted either from polyninylidene diffluoride membrane blots or from colloidal Coomassie blue stained 2‐DE gels and analysed by N‐terminal sequencing, Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MS) analysis or tandem MS sequencing. This enabled identification of 53 anther protein spots representing 43 different proteins. Using the publicly available rice expressed sequence tag (EST) database at the National Centre for Biotechnology Information, a further 37 protein spots were matched to ESTs. After BLAST searching with these ESTs, we were able to predict the identity of 22 of these protein spots. Proteome reference maps of rice anthers have been constructed according to the SWISS‐2DPAGE standards and are available for public access at http://semele.anu.edu.au/2d/2d.html.
Transgenic Research | 1996
Philip J. Larkin; J. M. Gibson; Ulrike Mathesius; Jeremy J. Weinman; Elena Gartner; E. Hall; Gregory J. Tanner; Barry G. Rolfe; Michael A. Djordjevic
We report an improved method for white clover (Trifolium repens) transformation usingAgrobacterium tumefaciens. High efficiencies of transgenic plant production were achieved using cotyledons of imbibed mature seed. Transgenic plants were recovered routinely from over 50% of treated cotyledons. Thebar gene and phosphinothricin selection was shown to be a more effective selection system thannptII (kanamycin selection) oraadA (spectinomycin selection). White clover was transformed with the soybean auxin responsive promoter, GH3, fused to the GUS gene (β-glucuronidase) to study the involvement of auxin in root development. Analysis of 12 independent transgenic plants showed that the location and pattern of GUS expression was consistent but the levels of expression varied. The level of GH3:GUS expression in untreated plants was enhanced specifically by auxin-treatment but the pattern of expression was not altered. Expression of the GH3:GUS fusion was not enhanced by other phytohormones. A consistent GUS expression pattern was evident in untreated plants presumably in response to endogenous auxin or to differences in auxin sensitivity in various clover tissues. In untreated plants, the pattern of GH3:GUS expression was consistent with physiological responses which are regarded as being auxin-mediated. For the first time it is shown that localised spots of GH3:GUS activity occurred in root cortical tissue opposite the sites where lateral roots subsequently were initiated. Newly formed lateral roots grew towards and through these islands of GH3:GUS expression, implying the importance of auxin in controlling lateral root development. Similarly, it is demonstrated for the first time that gravistimulated roots developed a rapid (within 1 h) induction of GH3:GUS activity in tissues on the non-elongating side of the responding root and this induction occurred concurrently with root curvature. These transgenic plants could be useful tools in determining the physiological and biochemical changes that occur during auxin-mediated responses.
Molecular Plant-microbe Interactions | 1989
McIver J; Michael A. Djordjevic; Jeremy J. Weinman; Bender Gl; Barry G. Rolfe
The positive activation of several nodulation genes in strain ANU843 of Rhizobium leguminosarum biovar trifolii is mediated by the product of the nodD gene and by the interaction of NodD with plant-secreted inducer and anti-inducer compounds. We have mutagenized the nodD gene of strain ANU843 with nitrosoguanidine and have found that the ability of the mutated nodD products to interact with inducer and anti-inducer compounds is affected by the amino acid sequence in at least two key regions, including a novel area between amino acids 77 and 123. Several novel classes of mutants were recognized by phenotypic and molecular analysis of the mutant nodD genes. Classes 1 and 4 mutants were able to induce nodA expression independently of the addition of inducer and anti-inducer compounds and were unable to mediate autoregulation of the nodD gene. Classes 2 and 3 mutants retained several properties of the wild-type nodD, including the ability to interact with inducer and anti-inducer compounds and the capacity to autoregulate nodD expression. In addition, class 2 mutants showed an inducer-independent ability to mediate nodA expression to 10-fold higher levels over control strains. The class 3 mutant showed reactivity to compounds that had little or no inducing ability with the wild-type nodD. An alteration in NodD function was demonstrated with classes 2 and 3 mutants, which showed greatly enhanced ability to complement a Tn5-induced mutation in the nodD1 gene of strain NGR234 and to restore nodulation ability on the tropical legume siratro. Mutants of nodD possessing inducer-independent ability to activate nod gene expression (classes 1, 2, and 4) were capable of extending the host range of R. l. bv. trifolii to the nonlegume Parasponia. DNA sequence analysis showed that single base changes were responsible for the altered phenotypic properties of five of six mutants examined. Four of the six mutations affected amino acid residues in a putative receiver domain in the N-terminal end of the nodD protein.
The EMBO Journal | 1989
Herman P. Spaink; Jeremy J. Weinman; Michael A. Djordjevic; C. A. Wijffelman; Robert J. H. Okker; Ben J. J. Lugtenberg
The nucleotide sequence of the nodE gene of Rhizobium trifolii strain ANU843 was determined. Like the nodE gene of R. leguminosarum strain 248 it encodes a protein with a predicted mol. wt of 42.0 kd. The predicted NodE proteins of R.trifolii and R.leguminosarum have a homology of 78%. Using antibodies raised against the NodE protein of R.trifolii it was shown that the NodE products of R.leguminosarum and R.trifolii are localized in the cytoplasmic membrane. Furthermore, these NodE proteins are predicted to contain at least two non‐polar transbilayer alpha‐helices. The nodE genes of R.trifolii and R.leguminosarum were separated from the nodF genes that precede them in the respective nodFE operons. Using the resulting clones, in which NodE was produced under control of the flavonoid‐inducible nodABCIJ promoter of R.leguminosarum, it was shown that the NodE product is the main factor that distinguishes the host range of nodulation of R.trifolii and R.leguminosarum. Hybrid nodE genes, which consist of a 5′ part of the R.leguminosarum nodE gene and a 3′ part of the R.trifolii gene, were constructed. From the properties of these hybrid genes it was concluded that a central region of 185 amino acids at the most, containing only 44 non‐identical amino acids, determines the difference in the host‐specific characteristics of the two NodE proteins.
Proteomics | 2002
Ulrike Mathesius; Nijat Imin; Hancai Chen; Michael A. Djordjevic; Jeremy J. Weinman; Siria H. A. Natera; Angela Carmen Morris; Tursun Kerim; Susan Paul; George F. Weiller; Barry G. Rolfe
We tested whether proteome reference maps established for one species can be used for cross‐species protein identification by comparing two‐dimensional protein gel patterns and protein identification data of two closely related bacterial strains and four plant species. First, proteome profiles of two strains of the fully sequenced bacterium Sinorhizobium meliloti were compared as an example of close relatedness, high reproducibility and sequence availability. Secondly, the proteome profiles of three legumes (Medicago truncatula, Melilotus alba and Trifolium subterraneum), and the nonlegume rice (Oryza sativa) were analysed to test cross‐species similarities. In general, we found stronger similarities in gel patterns of the arrayed proteins between the two bacterial strains and between the plant species than could be expected from the sequence similarities. However, protein identity could not be concluded from their gel position, not even when comparing strains of the same species. Surprisingly, in the bacterial strains peptide mass fingerprinting was more reliable for species‐specific protein identification than N‐terminal sequencing. While peptide masses were found to be unreliable for cross‐species protein identification, we present useful criteria to determine confident matching against species‐specific expressed sequence tag databases. In conclusion, we present evidence that cautions the use of proteome reference maps and peptide mass fingerprinting for cross‐species protein identification.
Electrophoresis | 2000
Hancai Chen; Jody Higgins; Ivan J. Oresnik; Michael F. Hynes; Siria H. A. Natera; Michael A. Djordjevic; Jeremy J. Weinman; Barry G. Rolfe
Sinorhizobium meliloti was studied by proteomic analysis to investigate the contribution made by plasmid‐encoded functions on the intracellular regulation of this bacterium. Protein profiles of strain 2011 were compared with those from its mutant strains which were either cured of their pRme2011a (also called pSyma) plasmid (strain 818), or contained an extensive deletion of this plasmid (strain SmA146). Plasmid pSyma contains the nodulation and nitrogen fixation genes and is 1.4 Mbp with an estimated coding potential of 1400 proteins. However, under the growth conditions used we could detect 60 differences between the parent strain and its pSyma‐cured derivative, strain 818. While the majority of these differences were due to regulatory changes, such as up‐ and downregulation, some proteins were totally missing in some strains. These 60 proteins were classified into 21 subgroups, A to U, based on their measured protein levels when the cells were grown in the presence or absence of luteolin. Comparisons were made between the different strains to assess the possible interactions of the different proteins of the subgroups and plasmid pSyma. These results suggest that pSyma has a role in the regulation of the expression of genes from the other replicons (3.5 Mbp chromosome and the 1.7 Mbp pSymB plasmid) present in the S. meliloti cells. Proteome analysis provides a sensitive tool to examine the functional organisation of the S. meliloti genome and the intracellular gene interactions between replicons and will provide a powerful analytical tool to complement the genome sequencing of strain 1021.
Molecular Plant-microbe Interactions | 1994
Lawson Cg; Michael A. Djordjevic; Jeremy J. Weinman; Barry G. Rolfe
The gene or genes encoding chalcone synthase (CHS) in the legume Trifolium subterraneum (subterranean clover) were induced within 6 hr after inoculation with Rhizobium leguminosarum bv. trifolii strain ANU843. No induction was found in uninoculated controls or plants inoculated with either the nodulation-deficient R. l. bv. trifolii strain ANU845 (pSym-) or R. meliloti strain 1021, which is capable of nodulating alfalfa but not clover. Morphological examination of the interaction between the legume and bacteria in this system showed that root hair distortion (a marker of the early events in the interaction) was apparent within 10 hr after inoculation. This indicated that CHS induction could occur before any detectable sign of rhizobial penetration of root hairs. The addition of a crude preparation of R. l. bv. trifolii lipooligosaccharide signals (Nod metabolites) to the plant growth medium had no effect on the expression of CHS over 36 hr, although root hair distortion was apparent over this time. These treatments were then contrasted with physical wounding. Wounding the plants led to a rapid induction of CHS, occurring within 2 hr. Sequence analysis of cloned CHS cDNA from pools sampled after Rhizobium inoculation or wounding treatments showed the gene designated CHS5 was the major CHS species in both treatments. Conserved sequences were found in promoters of CHS5 and soybean Gmchs7, a gene which has overlapping expression patterns. These findings support the view that the induction of the phenylpropanoid pathway is involved in the very early events of the Rhizobium infection of legumes.
Collaboration
Dive into the Jeremy J. Weinman's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs