Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Keirsey is active.

Publication


Featured researches published by Jeremy Keirsey.


Journal of Biological Chemistry | 2009

Telomerase-associated Protein 1, HSP90, and Topoisomerase IIα Associate Directly with the BLM Helicase in Immortalized Cells Using ALT and Modulate Its Helicase Activity Using Telomeric DNA Substrates

Saumitri Bhattacharyya; Jeremy Keirsey; Beatriz Russell; Juraj Kavecansky; Kate Lillard-Wetherell; Kambiz Tahmaseb; John J. Turchi; Joanna Groden

The BLM helicase associates with the telomere structural proteins TRF1 and TRF2 in immortalized cells using the alternative lengthening of telomere (ALT) pathways. This work focuses on identifying protein partners of BLM in cells using ALT. Mass spectrometry and immunoprecipitation techniques have identified three proteins that bind directly to BLM and TRF2 in ALT cells: telomerase-associated protein 1 (TEP1), heat shock protein 90 (HSP90), and topoisomerase IIα (TOPOIIα). BLM predominantly co-localizes with these proteins in foci actively synthesizing DNA during late S and G2/M phases of the cell cycle when ALT is thought to occur. Immunoprecipitation studies also indicate that only HSP90 and TOPOIIα are components of a specific complex containing BLM, TRF1, and TRF2 but that this complex does not include TEP1. TEP1, TOPOIIα, and HSP90 interact directly with BLM in vitro and modulate its helicase activity on telomere-like DNA substrates but not on non-telomeric substrates. Initial studies suggest that knockdown of BLM in ALT cells reduces average telomere length but does not do so in cells using telomerase.


Gastroenterology | 2008

The APC Tumor Suppressor Inhibits DNA Replication by Directly Binding to DNA via Its Carboxyl Terminus

Jiang Qian; Amod A. Sarnaik; Tera M. Bonney; Jeremy Keirsey; Kelly A. Combs; Kira Steigerwald; Samir Acharya; Gregory K. Behbehani; Michelle Craig Barton; Andrew M. Lowy; Joanna Groden

BACKGROUND & AIMS The APC tumor suppressor is well known for its ability to regulate Wnt signaling through mediation of beta-catenin levels in the cell. Transient over expression of the tumor suppressor gene APC in colon cancer cells prevents entry into S phase of the cell cycle, a phenotype only partially restored by cotransfection of a transcriptionally active form of beta-catenin. In an attempt to define its transcription-independent tumor suppressor functions, we tested whether APC directly affects DNA replication. METHODS A transcriptionally quiescent in vitro DNA replication system, the polymerase chain reaction, DNA binding assays, and transient transfections in colon cancer cell lines were used to determine the effects of APC on DNA replication and the mechanism by which it works. RESULTS We report that exogenous full-length APC inhibits replication of template DNA through a function that maps to amino acids 2140-2421, a region of the protein commonly lost by somatic or germline mutation. This segment of APC directly interacts with DNA, while mutation of the DNA-binding S(T)PXX motifs within it abolishes DNA binding and reduces inhibition of DNA replication. Phosphorylation of this segment by cyclin-dependent kinases also reduces inhibition of DNA replication. Furthermore, transient transfection of an APC segment encoding amino acids 2140-2421 into a colon cancer cell line with mutant APC prevents cell cycle progression into or through S phase. CONCLUSIONS Our results suggest that APC can negatively regulate cell cycle progression through inhibition of DNA replication by direct interaction with DNA.


Cancer Research | 2011

Chromosome Breakage Is Regulated by the Interaction of the BLM Helicase and Topoisomerase IIα

Beatriz Russell; Saumitri Bhattacharyya; Jeremy Keirsey; April Sandy; Patrick Grierson; Erin M. Perchiniak; Juraj Kavecansky; Samir Acharya; Joanna Groden

Cells deficient in the recQ-like helicase BLM are characterized by chromosome changes that suggest the disruption of normal mechanisms needed to resolve recombination intermediates and to maintain chromosome stability. Human BLM and topoisomerase IIα interact directly via amino acids 489-587 of BLM and colocalize predominantly in late G2 and M phases of the cell cycle. Deletion of this region does not affect the inherent in vitro helicase activity of BLM but inhibits the topoisomerase IIα-dependent enhancement of its activity, based on the analysis of specific DNA substrates that represent some recombination intermediates. Deletion of the interaction domain from BLM fails to correct the elevated chromosome breakage of transfected BLM-deficient cells. Our results demonstrate that the BLM-topoisomerase IIα interaction is important for preventing chromosome breakage and elucidate a DNA repair mechanism that is critical to maintain chromosome stability in cells and to prevent tumor formation.


Spine | 2015

Proteomic Analysis of Cerebrospinal Fluid in Canine Cervical Spondylomyelopathy

Paula Martin-Vaquero; Ronaldo C. da Costa; Matthew J. Allen; Sarah A. Moore; Jeremy Keirsey; Kari B. Green

Study Design. Prospective study. Objective. To identify proteins with differential expression in the cerebrospinal fluid (CSF) from 15 clinically normal (control) dogs and 15 dogs with cervical spondylomyelopathy (CSM). Summary of Background Data. Canine CSM is a spontaneous, chronic, compressive cervical myelopathy similar to human cervical spondylotic myelopathy. There is a limited knowledge of the molecular mechanisms underlying these conditions. Differentially expressed CSF proteins may contribute with novel information about the disease pathogenesis in both dogs and humans. Methods. Protein separation was performed with 2-dimensional electrophoresis. A Student t test was used to detect significant differences between groups (P < 0.05). Three comparisons were made: (1) control versus CSM-affected dogs, (2) control versus non–corticosteroid-treated CSM-affected dogs, and (3) non–corticosteroid-treated CSM-affected versus corticosteroid-treated CSM-affected dogs. Protein spots exhibiting at least a statistically significant 1.25-fold change between groups were selected for subsequent identification with capillary-liquid chromatography tandem mass spectrometry. Results. A total of 96 spots had a significant average change of at least 1.25-fold in 1 of the 3 comparisons. Compared with the CSF of control dogs, CSM-affected dogs demonstrated increased CSF expression of 8 proteins including vitamin D-binding protein, gelsolin, creatine kinase B-type, angiotensinogen, &agr;-2-HS-glycoprotein, SPARC (secreted protein, acidic, rich in cysteine), calsyntenin-1, and complement C3, and decreased expression of pigment epithelium-derived factor, prostaglandin-H2 D-isomerase, apolipoprotein E, and clusterin. In the CSF of CSM-affected dogs, corticosteroid treatment increased the expression of haptoglobin, transthyretin isoform 2, cystatin C-like, apolipoprotein E, and clusterin, and decreased the expression of angiotensinogen, &agr;-2-HS-glycoprotein, and gelsolin. Conclusion. Many of the differentially expressed proteins are associated with damaged neural tissue, bone turnover, and/or compromised blood-spinal cord barrier. The knowledge of the protein changes that occur in CSM and upon corticosteroid treatment of CSM-affected patients will aid in further understanding the pathomechanisms underlying this disease. Level of Evidence: N/A


Cardiovascular Pathology | 2017

Altered protein levels in the isolated extracellular matrix of failing human hearts with dilated cardiomyopathy

Joshua L. DeAguero; Elizabeth N. McKown; Liwen Zhang; Jeremy Keirsey; Edgar G. Fischer; Von G. Samedi; Benjamin D. Canan; Ahmet Kilic; Paul M. L. Janssen; Dawn A. Delfín

Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α2 and α6 isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.


Investigative Ophthalmology & Visual Science | 2017

Expression Profiling of Nonpolar Lipids in Meibum From Patients With Dry Eye: A Pilot Study

Jianzhong Chen; Jeremy Keirsey; Kari B. Green; Kelly K. Nichols

Purpose The purpose of this investigation was to characterize differentially expressed lipids in meibum samples from patients with dry eye disease (DED) in order to better understand the underlying pathologic mechanisms. Methods Meibum samples were collected from postmenopausal women with DED (PW-DED; n = 5) and a control group of postmenopausal women without DED (n = 4). Lipid profiles were analyzed by direct infusion full-scan electrospray ionization mass spectrometry (ESI-MS). An initial analysis of 145 representative peaks from four classes of lipids in PW-DED samples revealed that additional manual corrections for peak overlap and isotopes only slightly affected the statistical analysis. Therefore, analysis of uncorrected data, which can be applied to a greater number of peaks, was used to compare more than 500 lipid peaks common to PW-DED and control samples. Statistical analysis of peak intensities identified several lipid species that differed significantly between the two groups. Data from contact lens wearers with DED (CL-DED; n = 5) were also analyzed. Results Many species of the two types of diesters (DE) and very long chain wax esters (WE) were decreased by ∼20% in PW-DED, whereas levels of triacylglycerols were increased by an average of 39% ± 3% in meibum from PW-DED compared to that in the control group. Approximately the same reduction (20%) of similar DE and WE was observed for CL-DED. Conclusions Statistical analysis of peak intensities from direct infusion ESI-MS results identified differentially expressed lipids in meibum from dry eye patients. Further studies are warranted to support these findings.


Human Molecular Genetics | 2018

A tri-serine cluster within the topoisomerase IIα-interaction domain of the BLM helicase is required for regulating chromosome breakage in human cells

Julia Harris Behnfeldt; Samir Acharya; Larissa Tangeman; April Renee Sandy Gocha; Jeremy Keirsey; Joanna Groden

The recQ-like helicase BLM interacts directly with topoisomerase IIα to regulate chromosome breakage in human cells. We demonstrate that a phosphosite tri-serine cluster (S577/S579/S580) within the BLM topoisomerase IIα-interaction region is required for this function. Enzymatic activities of BLM and topoisomerase IIα are reciprocally stimulated in vitro by ten-fold for topoisomerase IIα decatenation/relaxation activity and three-fold for BLM unwinding of forked DNA duplex substrates. A BLM transgene encoding alanine substitutions of the tri-serine cluster in BLM-/- transfected cells increases micronuclei, DNA double strand breaks and anaphase ultra-fine bridges (UFBs), and decreases cellular co-localization of BLM with topoisomerase IIα. In vitro, these substitutions significantly reduce the topoisomerase IIα-mediated stimulation of BLM unwinding of forked DNA duplexes. Substitution of the tri-serine cluster with aspartic acids to mimic serine phosphorylation reverses these effects in vitro and in vivo. Our findings implicate the modification of this BLM tri-serine cluster in regulating chromosomal stability.


Inflammatory Bowel Diseases | 2016

P-137 YI Citrobacter Rodentium and Social Stressor Exposure Impacts Colonic Inflammation and Short Chain Fatty Acid Receptor Expression

Ross Maltz; Jeremy Keirsey; Amy Mackos; Sandra C. Kim; Arpad Somogyi; Michael T. Bailey


Gastroenterology | 2016

Su1894 Citrobacter Rodentium and Prolonged Stressor Exposure Impacts Colonic Inflammation and Short Chain Fatty Acid Receptor Expression

Ross Maltz; Jeremy Keirsey; Amy Mackos; Sandra C. Kim; Arpad Somogyi; Michael T. Bailey


Investigative Ophthalmology & Visual Science | 2015

Altered Regulation of Expressed Polar Meibum Lipids in Dry Eye Disease

Cameron K Postnikoff; Jianzhong Chen; Jeremy Keirsey; Kari Basso; Kelly K. Nichols

Collaboration


Dive into the Jeremy Keirsey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianzhong Chen

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kelly K. Nichols

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Bailey

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge