Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérémy Leconte is active.

Publication


Featured researches published by Jérémy Leconte.


Nature | 2017

Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

Michaël Gillon; A. H. M. J. Triaud; Brice-Olivier Demory; Emmanuel Jehin; Eric Agol; Katherine M. Deck; Susan M. Lederer; Julien de Wit; Artem Burdanov; James G. Ingalls; Emeline Bolmont; Jérémy Leconte; Sean N. Raymond; Franck Selsis; Martin Turbet; Khalid Barkaoui; Adam J. Burgasser; M. R. Burleigh; Sean J. Carey; Aleksander Chaushev; C. M. Copperwheat; Laetitia Delrez; Catarina S. Fernandes; Daniel L. Holdsworth; Enrico J. Kotze; Valérie Van Grootel; Yaseen Almleaky; Z. Benkhaldoun; Pierre Magain; D. Queloz

One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.


Icarus | 2013

3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds.

F. Forget; Robin Wordsworth; Ehouarn Millour; J.-B. Madeleine; Laura Kerber; Jérémy Leconte; Emmanuel Marcq; Robert M. Haberle

On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 C anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 C (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40 at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent with a cold early Mars scenario in which nonclimatic mechanisms must occur to explain the evidence for liquid water. In a companion paper by Wordsworth et al. we simulate the hydrological cycle on such a planet and discuss how this could have happened in more detail.


Astronomy and Astrophysics | 2010

Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity

Jérémy Leconte; Gilles Chabrier; Isabelle Baraffe; B. Levrard

We present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut (1981) model, valid at any order in eccentricity, obliquity and spin. We demonstrate both analytically and numerically that except if the system was formed with a nearly circular orbit (e < 0.2), consistently solving the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at 2nd order in eccentricity, as done in all previous studies, lead to quantitatively and sometimes even qualitatively erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders of magnitude. These discrepancies can by no means be justified by invoking the uncertainty in the tidal quality factors. Based on these complete, consistent calculations, we revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets. We show that even though tidal dissipation does provide a substantial contribution to the planet’s heat budget and can explain some of the moderately bloated hot-Jupiters, this mechanism can not explain alone the properties of the most inflated objects, including HD 209 458 b. Indeed, solving the complete tidal equations shows that enhanced tidal dissipation and thus orbit circularization occur too early during the planet’s evolution to provide enough extra energy at the present epoch. In that case either a third, so far undetected, low-mass companion must be present to keep exciting the eccentricity of the giant planet, or other mechanisms – stellar irradiation induced surface winds dissipating in the planet’s tidal bulges and thus reaching the convective layers, inefficient flux transport by convection in the planet’s interior – must be invoked, together with tidal dissipation, to provide all the pieces of the abnormally large exoplanet puzzle.


Nature | 2013

Increased insolation threshold for runaway greenhouse processes on Earth-like planets

Jérémy Leconte; F. Forget; Benjamin Charnay; Robin Wordsworth; Alizée Pottier

The increase in solar luminosity over geological timescales should warm the Earth’s climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can ‘run away’ until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth’s climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m−2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.


Astronomy and Astrophysics | 2012

A new vision of giant planet interiors: Impact of double diffusive convection

Jérémy Leconte; Gilles Chabrier

While conventional interior models for Jupiter and Saturn are based on the simplistic assumption of a solid core surrounded by a homogeneous gaseous envelope, we have derived new models with an inhomogeneous distribution of heavy elements within these planets. Such a compositional gradient hampers large-scale convection that turns into double-diffusive convection, yielding an inner thermal profile that departs from the traditionally assumed adiabatic interior and affecting these planets heat content and cooling history. To address this problem, we have developed an analytical approach to describe layered double-diffusive convection and apply this formalism to solar system gaseous giant planet interiors. These models satisfy all observational constraints and yield values for the metal enrichment of our gaseous giants that are up to 30% to 60% higher than previously thought. The models also constrain the size of the convective layers within the planets. Because the heavy elements tend to be redistributed within the gaseous envelope, the models predict smaller than usual central cores inside Saturn and Jupiter, with possibly no core for the latter. These models open a new window and raise new challenges to our understanding of the internal structure of giant (solar and extrasolar) planets, in particular on how to determine their heavy material content, a key diagnostic for planet formation theories.


Astronomy and Astrophysics | 2011

Tidal obliquity evolution of potentially habitable planets

René Heller; Jérémy Leconte; Rory Barnes

Context. Stellar insolation has been used as the main constraint on a planet’s potential habitability. However, as more Earth-like planets are discovered around low-mass stars (LMSs), a re-examination of the role of tides on the habitability of exoplanets has begun. Those studies have yet to consider the misalignment between a planet’s rotational axis and the orbital plane normal, i.e. the planetary obliquity. Aims. This paper considers the constraints on habitability arising from tidal processes due to the planet’s spin orientation and rate. Since tidal processes are far from being understood we seek to understand differences between commonly used tidal models. Methods. We apply two equilibrium tide theories – a constant-phase-lag model and a constant-time-lag model – to compute the obliquity evolution of terrestrial planets orbiting in the habitable zones around LMSs. The time for the obliquity to decrease from an Earth-like obliquity of 23.5 ◦ to 5 ◦ , the “tilt erosion time”, is compared to the traditional insolation habitable zone (IHZ) in the parameter space spanned by the semi-major axis a, the eccentricity e, and the stellar mass Ms. We also compute tidal heating and equilibrium rotation caused by obliquity tides as further constraints on habitability. The Super-Earth Gl581 d and the planet candidate Gl581 g are studied as examples for these tidal processes.


Astronomy and Astrophysics | 2016

The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present

Ignasi Ribas; Emeline Bolmont; Franck Selsis; Ansgar Reiners; Jérémy Leconte; Sean N. Raymond; Scott G. Engle; Edward F. Guinan; J. Morin; Martin Turbet; F. Forget; Guillem Anglada-Escudé

Proxima b is a planet with a minimum mass of 1.3 MEarth orbiting within the habitable zone (HZ) of Proxima Centauri, a very low-mass, active star and the Suns closest neighbor. Here we investigate a number of factors related to the potential habitability of Proxima b and its ability to maintain liquid water on its surface. We set the stage by estimating the current high-energy irradiance of the planet and show that the planet currently receives 30 times more EUV radiation than Earth and 250 times more X-rays. We compute the time evolution of the stars spectrum, which is essential for modeling the flux received over Proxima bs lifetime. We also show that Proxima bs obliquity is likely null and its spin is either synchronous or in a 3:2 spin-orbit resonance, depending on the planets eccentricity and level of triaxiality. Next we consider the evolution of Proxima bs water inventory. We use our spectral energy distribution to compute the hydrogen loss from the planet with an improved energy-limited escape formalism. Despite the high level of stellar activity we find that Proxima b is likely to have lost less than an Earth oceans worth of hydrogen before it reached the HZ 100-200 Myr after its formation. The largest uncertainty in our work is the initial water budget, which is not constrained by planet formation models. We conclude that Proxima b is a viable candidate habitable planet.


Astronomy and Astrophysics | 2016

The habitability of Proxima Centauri b. II. Possible climates and Observability

Martin Turbet; Jérémy Leconte; Franck Selsis; Emeline Bolmont; F. Forget; Ignasi Ribas; Sean N. Raymond; Guillem Anglada-Escudé

Radial velocity monitoring has found the signature of a


Nature Geoscience | 2013

Layered convection as the origin of Saturn’s luminosity anomaly

Jérémy Leconte; Gilles Chabrier

M \sin i = 1.3


Nature Astronomy | 2017

A seven-planet resonant chain in TRAPPIST-1

Rodrigo Luger; Marko Sestovic; Ethan Kruse; Simon L. Grimm; Brice-Olivier Demory; Eric Agol; Emeline Bolmont; Daniel C. Fabrycky; Catarina S. Fernandes; Valérie Van Grootel; Adam J. Burgasser; Michaël Gillon; James G. Ingalls; Emmanuel Jehin; Sean N. Raymond; Franck Selsis; A. H. M. J. Triaud; Geert Barentsen; Steve B. Howell; Laetitia Delrez; Julien de Wit; Daniel Foreman-Mackey; Daniel L. Holdsworth; Jérémy Leconte; Susan M. Lederer; Martin Turbet; Yaseen Almleaky; Z. Benkhaldoun; Pierre Magain; Brett M. Morris

~M

Collaboration


Dive into the Jérémy Leconte's collaboration.

Top Co-Authors

Avatar

Franck Selsis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Hersant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge