Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy M. Silverman is active.

Publication


Featured researches published by Jeremy M. Silverman.


American Journal of Human Genetics | 2003

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia

Cathryn M. Lewis; Douglas F. Levinson; Lesley H. Wise; Lynn E. DeLisi; Richard E. Straub; Iiris Hovatta; Nigel Melville Williams; Sibylle G. Schwab; Ann E. Pulver; Stephen V. Faraone; Linda M. Brzustowicz; Charles A. Kaufmann; David L. Garver; Hugh Gurling; Eva Lindholm; Hilary Coon; Hans W. Moises; William Byerley; Sarah H. Shaw; Andrea Mesén; Robin Sherrington; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler; Jesper Ekelund; Tiina Paunio; Jouko Lönnqvist; Leena Peltonen; Michael Conlon O'Donovan; Michael John Owen

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bins average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


Nature | 2009

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph T. Glessner; Kai Wang; Guiqing Cai; Olena Korvatska; Cecilia E. Kim; Shawn Wood; Haitao Zhang; Annette Estes; Camille W. Brune; Jonathan P. Bradfield; Marcin Imielinski; Edward C. Frackelton; Jennifer Reichert; Emily L. Crawford; Jeffrey Munson; Patrick Sleiman; Rosetta M. Chiavacci; Kiran Annaiah; Kelly Thomas; Cuiping Hou; Wendy Glaberson; James H. Flory; Frederick G. Otieno; Maria Garris; Latha Soorya; Lambertus Klei; Joseph Piven; Kacie J. Meyer; Evdokia Anagnostou; Takeshi Sakurai

Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.


Nature | 2009

Common variants on chromosome 6p22.1 are associated with schizophrenia

Jianxin Shi; Douglas F. Levinson; Jubao Duan; Alan R. Sanders; Yonglan Zheng; Itsik Pe'er; Frank Dudbridge; Peter Holmans; Alice S. Whittemore; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Raymond R. Crowe; Jorge R. Oksenberg; Daniel B. Mirel; Kenneth S. Kendler; Robert Freedman; Pablo V. Gejman

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high heritability (80–85%) and complex transmission. Recent studies implicate rare, large, high-penetrance copy number variants in some cases, but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 × 10-9). This region includes a histone gene cluster and several immunity-related genes—possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.


Nature Genetics | 2008

Identification of loci associated with schizophrenia by genome-wide association and follow-up

Michael Conlon O'Donovan; Nicholas John Craddock; Nadine Norton; Hywel Williams; T. Peirce; Valentina Escott-Price; Ivan Nikolov; Marian Lindsay Hamshere; Liam Stuart Carroll; Lyudmila Georgieva; Sarah Dwyer; Peter Holmans; Jonathan Marchini; Chris C. A. Spencer; Bryan Howie; Hin-Tak Leung; Annette M. Hartmann; Hans-Jürgen Möller; Derek W. Morris; Yongyong Shi; Guoyin Feng; Per Hoffmann; Peter Propping; Catalina Vasilescu; Wolfgang Maier; Marcella Rietschel; Stanley Zammit; Johannes Schumacher; Emma M. Quinn; Thomas G. Schulze

We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10−5 in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 × 10−4), and the overall pattern of replication was unlikely to occur by chance (P = 9 × 10−8). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 × 10−7) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 × 10−9).


American Journal of Psychiatry | 2011

Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications

Douglas F. Levinson; Jubao Duan; Sang Oh; Kai Wang; Alan R. Sanders; Jianxin Shi; Nancy R. Zhang; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Kenneth S. Kendler; Robert Freedman; Frank Dudbridge; Itsik Pe'er; Hakon Hakonarson; Sarah E. Bergen; Ayman H. Fanous; Peter Holmans; Pablo V. Gejman

OBJECTIVE To evaluate previously reported associations of copy number variants (CNVs) with schizophrenia and to identify additional associations, the authors analyzed CNVs in the Molecular Genetics of Schizophrenia study (MGS) and additional available data. METHOD After quality control, MGS data for 3,945 subjects with schizophrenia or schizoaffective disorder and 3,611 screened comparison subjects were available for analysis of rare CNVs (<1% frequency). CNV detection thresholds were chosen that maximized concordance in 151 duplicate assays. Pointwise and genewise analyses were carried out, as well as analyses of previously reported regions. Selected regions were visually inspected and confirmed with quantitative polymerase chain reaction. RESULTS In analyses of MGS data combined with other available data sets, odds ratios of 7.5 or greater were observed for previously reported deletions in chromosomes 1q21.1, 15q13.3, and 22q11.21, duplications in 16p11.2, and exon-disrupting deletions in NRXN1. The most consistently supported candidate associations across data sets included a 1.6-Mb deletion in chromosome 3q29 (21 genes, TFRC to BDH1) that was previously described in a mild-moderate mental retardation syndrome, exonic duplications in the gene for vasoactive intestinal peptide receptor 2 (VIPR2), and exonic duplications in C16orf72. The case subjects had a modestly higher genome-wide number of gene-containing deletions (>100 kb and >1 Mb) but not duplications. CONCLUSIONS The data strongly confirm the association of schizophrenia with 1q21.1, 15q13.3, and 22q11.21 deletions, 16p11.2 duplications, and exonic NRXN1 deletions. These CNVs, as well as 3q29 deletions, are also associated with mental retardation, autism spectrum disorders, and epilepsy. Additional candidate genes and regions, including VIPR2, were identified. Study of the mechanisms underlying these associations should shed light on the pathophysiology of schizophrenia.


American Journal of Human Genetics | 2001

Evidence for a Susceptibility Gene for Autism on Chromosome 2 and for Genetic Heterogeneity

Joseph D. Buxbaum; Jeremy M. Silverman; Christopher J. Smith; Mario Kilifarski; Jennifer Reichert; Eric Hollander; Brian A. Lawlor; Michael Fitzgerald; David A. Greenberg; Kenneth L. Davis

Although there is considerable evidence for a strong genetic component to idiopathic autism, several genomewide screens for susceptibility genes have been performed with limited concordance of linked loci, reflecting either numerous genes of weak effect and/or sample heterogeneity. Because decreasing sample heterogeneity would increase the power to identify genes, the effect on evidence for linkage of restricting a sample of autism-affected relative pairs to those with delayed onset (at age >36 mo) of phrase speech (PSD, for phrase speech delay) was studied. In the second stage of a two-stage genome screen for susceptibility loci involving 95 families with two or more individuals with autism or related disorders, a maximal multipoint heterogeneity LOD score (HLOD) of 1.96 and a maximal multipoint nonparametric linkage (NPL) score of 2.39 was seen on chromosome 2q. Restricting the analysis to the subset of families (n=49) with two or more individuals having a narrow diagnosis of autism and PSD generated a maximal multipoint HLOD score of 2.99 and an NPL score of 3.32. The increased scores in the restricted sample, together with evidence for heterogeneity in the entire sample, indicate that the restricted sample comprises a population that is more genetically homogeneous, which could therefore increase the likelihood of positional cloning of susceptibility loci.


Journal of Psychiatric Research | 2001

Affective instability and impulsivity in borderline personality and bipolar II disorders: similarities and differences.

Chantal Henry; Vivian Mitropoulou; Antonia S. New; Harold W. Koenigsberg; Jeremy M. Silverman; Larry J. Siever

OBJECTIVES many studies have reported a high degree of comorbidity between mood disorders, among which are bipolar disorders, and borderline personality disorder and some studies have suggested that these disorders are co-transmitted in families. However, few studies have compared personality traits between these disorders to determine whether there is a dimensional overlap between the two diagnoses. The aim of this study was to compare impulsivity, affective lability and intensity in patients with borderline personality and bipolar II disorder and in subjects with neither of these diagnoses. METHODS patients with borderline personality but without bipolar disorder (n=29), patients with bipolar II disorder without borderline personality but with other personality disorders (n=14), patients with both borderline personality and bipolar II disorder (n=12), and patients with neither borderline personality nor bipolar disorder but other personality disorders (OPD; n=93) were assessed using the Affective Lability Scale (ALS), the Affect Intensity Measure (AIM), the Buss-Durkee Hostility Inventory (BDHI) and the Barratt Impulsiveness Scale (BIS-7B). RESULTS borderline personality patients had significantly higher ALS total scores (P<0.05) and bipolar II patients tended to have higher ALS scores than patients with OPD (P<0.06). On one of the ALS subscales, the borderline patients displayed significant higher affective lability between euthymia and anger (P<0.002), whereas patients with bipolar II disorder displayed affective lability between euthymia and depression (P<0.04), or elation (P<0.01) or between depression and elation (P<0.01). A significant interaction between borderline personality and bipolar II disorder was observed for lability between anxiety and depression (P<0.01) with the ALS. High scores for impulsiveness (BISTOT, P<0.001) and hostility (BDHI, P<0.05) were obtained for borderline personality patients only and no significant interactions between diagnoses were observed. Only borderline personality patients tended to have higher affective intensity (AIM, P<0.07). CONCLUSIONS borderline personality disorder and bipolar II disorder appear to involve affective lability, which may account for the efficacy of mood stabilizers treatments in both disorders. However, our results suggest that borderline personality disorder cannot be viewed as an attenuated group of affective disorders.


Molecular Psychiatry | 2002

Association between a GABRB3 polymorphism and autism

Joseph D. Buxbaum; Jeremy M. Silverman; Christopher J. Smith; Greenberg Da; Kilifarski M; Jennifer Reichert; Cook Eh; Fang Y; Song Cy; Vitale R

Autistic disorder (OMIM 209850) is a disease with a significant genetic component of a complex nature.1 Cytogenetic abnormalities in the Prader-Willi/Angelman syndrome critical region (15q11–13) have been described in several individuals with autism.1 For this reason, markers across this region have been screened for evidence of linkage and association, and a marker (155CA-2) in the γ-aminobutyric acid type-A receptor β3 subunit gene (GABRB3) has been associated in one study2 but not others.3–5 We completed an association analysis with 155CA-2 using the transmission disequilibrium test (TDT) in a set of 80 autism families (59 multiplex and 21 trios). We also used four additional markers (69CA, 155CA-1, 85CA, and A55CA-1) localized within 150 kb of 155CA-2. The use of multi-allelic TDT (MTDT) (P < 0.002), as well as the TDT (P < 0.004), demonstrated an association between autistic disorder and 155CA-2 in these families. Meiotic segregation distortion could be excluded as a possible cause for these results since no disequilibrium was observed in unaffected siblings. These findings support a role for genetic variants within the GABA receptor gene complex in 15q11–13 in autistic disorder.


Molecular Psychiatry | 2008

CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy

Joseph I. Friedman; T. Vrijenhoek; S. Markx; Irene M. Janssen; W.A. van der Vliet; Brigitte H. W. Faas; N.V.A.M. Knoers; Wiepke Cahn; René S. Kahn; Lisa Edelmann; Kenneth L. Davis; Jeremy M. Silverman; Han G. Brunner; A.H.M. Geurts van Kessel; Cisca Wijmenga; Roel A. Ophoff; Joris A. Veltman

A homozygous mutation of the CNTNAP2 gene has been associated with a syndrome of focal epilepsy, mental retardation, language regression and other neuropsychiatric problems in children of the Old Order Amish community. Here we report genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia. Genomic deletions of varying sizes affecting the CNTNAP2 gene were identified in three non-related Caucasian patients. In contrast, we did not observe any dosage variation for this gene in 512 healthy controls. Moreover, this genomic region has not been identified as showing large-scale copy number variation. Our data thus confirm an association of CNTNAP2 to epilepsy outside the Old Order Amish population and suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.

Collaboration


Dive into the Jeremy M. Silverman's collaboration.

Top Co-Authors

Avatar

Larry J. Siever

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

James Schmeidler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Michal Schnaider Beeri

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth L. Davis

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Smith

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Mary Sano

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivian Mitropoulou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge