Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy P. Segal is active.

Publication


Featured researches published by Jeremy P. Segal.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically

Sarah Stanley; Shirly Pinto; Jeremy P. Segal; Cristian A. Pérez; Agnes Viale; Jeff DeFalco; Xiaoli Cai; Lora K. Heisler; Jeffrey M. Friedman

The autonomic nervous system regulates fuel availability and energy storage in the liver, adipose tissue, and other organs; however, the molecular components of this neural circuit are poorly understood. We sought to identify neural populations that project from the CNS indirectly through multisynaptic pathways to liver and epididymal white fat in mice using pseudorabies virus strains expressing different reporters together with BAC transgenesis and immunohistochemistry. Neurons common to both circuits were identified in subpopulations of the paraventricular nucleus of the hypothalamus (PVH) by double labeling with markers expressed in viruses injected in both sites. The lateral hypothalamus and arcuate nucleus of the hypothalamus and brainstem regions (nucleus of the solitary tract and A5 region) also project to both tissues but are labeled at later times. Connections from these same sites to the PVH were evident after direct injection of virus into the PVH, suggesting that these regions lie upstream of the PVH in a common pathway to liver and adipose tissue (two metabolically active organs). These common populations of brainstem and hypothalamic neurons express neuropeptide Y and proopiomelanocortin in the arcuate nucleus, melanin-concentrating hormone, and orexin in the lateral hypothalamus and in the corticotrophin-releasing hormone and oxytocin in the PVH. The delineation of this circuitry will facilitate a functional analysis of the possible role of these potential command-like neurons to modulate autonomic outflow and coordinate metabolic responses in liver and adipose tissue.


Science | 2014

Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas.

Daniel Schramek; Ataman Sendoel; Jeremy P. Segal; Slobodan Beronja; Evan Heller; Daniel Oristian; Boris Reva; Elaine Fuchs

Identifying Drivers and Passengers Modern genomics is unearthing hundreds of genetic and epigenetic alterations associated with human cancers. It is important to delineate which of these alterations participate actively in tumor progression and/or metastases (driver mutations) and which are inconsequential (passenger mutations). To this end, Schramek et al. (p. 309) conducted an in vivo RNA interference screen in mice to test simultaneously the functionality of putative cancer genes and down-regulated messenger RNAs associated with tumor-initiating cells of squamous cell carcinomas (SCCs). Several candidates, including nonmuscle myosin-IIa, not previously viewed as tumor suppressors were uncovered. Myh9 regulates p53 activation and is reduced in certain carcinomas associated with poor survival. Mining modern genomics for cancer therapies is predicated on weeding out “bystander” alterations (nonconsequential mutations) and identifying “driver” mutations responsible for tumorigenesis and/or metastasis. We used a direct in vivo RNA interference (RNAi) strategy to screen for genes that upon repression predispose mice to squamous cell carcinomas (SCCs). Seven of our top hits—including Myh9, which encodes nonmuscle myosin IIa—have not been linked to tumor development, yet tissue-specific Myh9 RNAi and Myh9 knockout trigger invasive SCC formation on tumor-susceptible backgrounds. In human and mouse keratinocytes, myosin IIa’s function is manifested not only in conventional actin-related processes but also in regulating posttranscriptional p53 stabilization. Myosin IIa is diminished in human SCCs with poor survival, which suggests that in vivo RNAi technology might be useful for identifying potent but low-penetrance tumor suppressors.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nfatc1 orchestrates aging in hair follicle stem cells

Brice E. Keyes; Jeremy P. Segal; Evan Heller; Wen Hui Lien; Chiung-Ying Chang; Xingyi Guo; Dan S. Oristian; Deyou Zheng; Elaine Fuchs

Significance Signs of aging often first appear in our skin and hair. As animals age, hair follicles spend more time resting instead of generating hair. Here we show that this decline is rooted in age-related changes in systemic, local, and intrinsic factors, which collaborate to reduce hair follicle stem cell (HFSC) activity. We uncover a unique and hitherto-undescribed age-related role for bone morphogenic protein signaling and a downstream effector, nuclear factor of activated T-cell c1 (NFATc1). In young stem cells, NFATc1 is on when they are quiescent and wanes when they make hair. In aging follicles, NFATc1 and its target genes remain high too long. Importantly, NFATc1 inhibitors restore youthful behavior to aging HFSCs, providing unique insights into age-related changes in skin physiology. Hair production is fueled by stem cells (SCs), which transition between cyclical bouts of rest and activity. Here, we explore why hair growth wanes with age. We show that aged hair follicle SCs (HFSCs) in mice exhibit enhanced resting and abbreviated growth phases and are delayed in response to tissue-regenerating cues. Aged HFSCs are poor at initiating proliferation and show diminished self-renewing capacity upon extensive use. Only modestly restored by parabiosis, these features are rooted in elevated cell-intrinsic sensitivity and local elevation in bone morphogenic protein (BMP) signaling. Transcriptional profiling presents differences consistent with defects in aged HFSC activation. Notably, BMP-/calcium-regulated, nuclear factor of activated T-cell c1 (NFATc1) in HFSCs becomes recalcitrant to its normal down-regulating cues, and NFATc1 ChIP-sequencing analyses reveal a marked enrichment of NFATc1 target genes within the age-related signature. Moreover, aged HFSCs display more youthful levels of hair regeneration when BMP and/or NFATc1 are inhibited. These results provide unique insights into how skin SCs age.


The Journal of Molecular Diagnostics | 2017

Clinical Validation of a Next-Generation Sequencing Genomic Oncology Panel via Cross-Platform Benchmarking against Established Amplicon Sequencing Assays

Sabah Kadri; Bradley C. Long; Ibro Mujacic; Chao J. Zhen; Michelle N. Wurst; Shruti Sharma; Nadia McDonald; Nifang Niu; Sonia Benhamed; Jigyasa H. Tuteja; Tanguy Y. Seiwert; Kevin P. White; Megan E. McNerney; Carrie Fitzpatrick; Y. Lynn Wang; Larissa V. Furtado; Jeremy P. Segal

Next-generation sequencing (NGS) genomic oncology profiling assays have emerged as key drivers of personalized cancer care and translational research. However, validation of these assays to meet strict clinical standards has been historically problematic because of both significant assay complexity and a scarcity of optimal validation samples. Herein, we present the clinical validation of 76 genes from a novel 1212-gene large-scale hybrid capture cancer sequencing assay (University of Chicago Medicine OncoPlus) using full-data comparisons against multiple clinical NGS amplicon-based assays to yield dramatic increases in per-sample data comparison efficiency compared with previously published validations. Using a sample set of 104 normal, solid tumor, and hematopoietic malignancy specimens, head-to-head NGS data analyses allowed for 6.8 million individual clinical base call comparisons, including 2729 previously confirmed variants, with 100% sensitivity and specificity. University of Chicago Medicine OncoPlus showed excellent performance for detection of single-nucleotide variants, insertions/deletions up to 52 bp, and FLT3 internal tandem duplications of up to 102 bp or larger. Highly concordant copy number variant and ALK/RET/ROS1 gene fusion detection were also observed. In addition to underlining the efficiency of NGS validation via full-data benchmarking against existing clinical NGS assays, this study also highlights the degree of performance similarity between hybrid capture and amplicon assays that is attainable with the application of strict quality control parameters and optimized computational analytics.


Oncotarget | 2016

Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL

Shruti Sharma; Natalie Galanina; Ailin Guo; James R. Lee; Sabah Kadri; Charles Van Slambrouck; Bradley C. Long; Weige Wang; Mei Ming; Larissa V. Furtado; Jeremy P. Segal; Wendy Stock; Girish Venkataraman; Wei-Jen Tang; Pin Lu; Yue Lynn Wang

Ibrutinib (ibr), a first-in-class Bruton tyrosine kinase (BTK) inhibitor, has demonstrated high response rates in both relapsed/refractory and treatment naïve chronic lymphocytic leukemia (CLL). However, about 25% of patients discontinue ibrutinib therapy at a median follow-up of 20 months and many patients discontinue the treatment due to leukemia progression or Richter transformation. Mutations affecting the C481 residue of BTK disrupt ibrutinib binding and have been characterized by us and others as the most common mechanism of ibrutinib resistance. Thus far, all described BTK mutations are located in its kinase domain and mutations outside this domain have never been described. Herein, we report a patient whose CLL progressed, was salvaged with ibrutinib and then relapsed. Serial analysis of samples throughout patients clinical course identified a structurally novel mutation (BTKT316A) in the SH2 domain, but not kinase domain, of Bruton tyrosine kinase which was associated with disease relapse. Functionally, cells carrying BTKT316A show resistance to ibrutinib at both cellular and molecular levels to a similar extent as BTKC481S. Our study lends further insight into the diverse mechanisms of ibrutinib resistance that has important implications for the development of next-generation BTK inhibitors as well as mutation detection in relapsed patients.


The Journal of Molecular Diagnostics | 2015

Amplicon Indel Hunter Is a Novel Bioinformatics Tool to Detect Large Somatic Insertion/Deletion Mutations in Amplicon-Based Next-Generation Sequencing Data

Sabah Kadri; Chao J. Zhen; Michelle N. Wurst; Bradley C. Long; Zi-Feng Jiang; Y. Lynn Wang; Larissa V. Furtado; Jeremy P. Segal

Amplicon-based targeted next-generation sequencing assays are used widely to test for clinically relevant somatic mutations in cancer. However, accurate detection of large insertions and deletions (indels) via these assays remains challenging. Sequencing reads that cover these anomalies are, by definition, different from the reference sequence, and lead to variable performance of alignment algorithms. Reads with large indels may be aligned incorrectly, causing incorrect calls, or may remain unmapped and essentially ignored by downstream informatics pipeline sub-processes. Herein, we describe Amplicon Indel Hunter (AIH), a novel large (>5-bp) indel detection method that is reference genome independent and highly sensitive for the identification of somatic indels in amplicon-based, paired-end, next-generation sequencing data. We validated the algorithm for sensitivity and specificity using a set of clinical cancer samples with Clinical Laboratory Improvement Amendment-confirmed indels as well as in silico mutated data sets. The AIH detected 100% of tested large indels with relatively higher mutant allele frequencies compared with a variety of traditional aligners, which showed variably reduced sensitivity and specificity by comparison. The AIH especially outperformed alignment-based methods for detection of all tested FLT3 internal tandem duplications up to 102 bp. Because AIH runs in parallel to traditional alignment-based informatics pathways, it can be readily incorporated into nearly any analysis pipeline for somatic mutation detection in paired-end amplicon-based data.


Applied and Translational Genomics | 2013

Practical, ethical and regulatory considerations for the evolving medical and research genomics landscape ☆

Gholson J. Lyon; Jeremy P. Segal

Recent advances in sequencing technology are making possible the application of large-scale genomic analyses to individualized care, both in wellness and disease. However, a number of obstacles remain before genomic sequencing can become a routine part of clinical practice. One of the more significant and underappreciated is the lack of consensus regarding the proper environment and regulatory structure under which clinical genome sequencing and interpretation should be performed. The continued reliance on pure research vs. pure clinical models leads to problems for both research participants and patients in an era in which the lines between research and clinical practice are becoming increasingly blurred. Here, we discuss some of the ethical, regulatory and practical considerations that are emerging in the field of genomic medicine. We also propose that many of the cost and safety issues we are facing can be mitigated through expanded reliance on existing clinical regulatory frameworks and the implementation of distributive work-sharing strategies designed to leverage the strengths of our genomics centers and clinical interpretive teams.


Blood Advances | 2017

Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL

Sabah Kadri; James R. Lee; Carrie Fitzpatrick; Natalie Galanina; Madina Sukhanova; Girish Venkataraman; Shruti Sharma; Brad Long; Kristin Petras; Megan Theissen; Mei Ming; Yuri Kobzev; Wenjun Kang; Ailin Guo; Weige Wang; Nifang Niu; Howard L. Weiner; Michael J. Thirman; Wendy Stock; Sonali M. Smith; Chadi Nabhan; Jeremy P. Segal; Pin Lu; Y. Lynn Wang

Ibrutinib has generated remarkable responses in patients with chronic lymphocytic leukemia (CLL), including those with an unfavorable cytogenetic profile. However, patients develop resistance, with poor outcomes and no established treatment options. Mutations in BTK and PLCG2 have emerged as main mechanisms of drug resistance, but not all patients carry these mutations. Further understanding of mechanisms of resistance is urgently needed and will support rational development of new therapeutic strategies. To that end, we characterized the genomic profiles of serial samples from 9 patients with ibrutinib-relapsed disease, including 6 who had Richter transformation. Mutations, indels, copy-number aberrations, and loss of heterozygosity were assessed using next-generation sequencing and single-nucleotide polymorphism array. We found that 18p deletion (del(18p)), together with del(17p)/TP53 mutations, was present in 5 of 9 patients before ibrutinib therapy. In addition to BTKC481 , we identified BTKT316A , a structurally novel mutation located in the SH2 domain of BTK. Minor BTK clones with low allele frequencies were captured in addition to major BTK clones. Although TP53 loss predisposes patients for relapse, clone size of TP53 loss may diminish during disease progression while mutant BTK clone expands. In patients who had Richter transformation, we found that the transformed cells were clonal descendants of circulating leukemia cells but continued to undergo evolution and drifts. Surprisingly, transformed lymphoma cells in tissue may acquire a different BTK mutation from that in the CLL leukemia cells. Collectively, these results provide insights into clonal evolution underlying ibrutinib relapse and prompt further investigation on genomic abnormalities that have clinical application potential.


Clinical Cancer Research | 2017

B-Cell Lymphoma Patient-Derived Xenograft Models Enable Drug Discovery and Are a Platform for Personalized Therapy

Liang Zhang; Krystle Nomie; Hui Zhang; Taylor Bell; Lan V Pham; Sabah Kadri; Jeremy P. Segal; Shaoying Li; Shouhao Zhou; David Santos; Shawana Richard; Shruti Sharma; Wendy Chen; Onyekachukwu Oriabure; Yang Liu; Shengjian Huang; Huifang Guo; Zhihong Chen; Wenjing Tao; Carrie J Li; Jack Wang; Bingliang Fang; Jacqueline Wang; Lei Li; Maria Badillo; Makhdum Ahmed; Selvi Thirumurthi; Steven Y. Huang; Yiping Shao; Laura T Lam

Purpose: Patients with B-cell lymphomas often relapse after frontline therapy, and novel therapies are urgently needed to provide long-term remission. We established B-cell lymphoma patient-derived xenograft (PDX) models to assess their ability to mimic tumor biology and to identify B-cell lymphoma patient treatment options. Experimental Design: We established the PDX models from 16 patients with diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, marginal zone lymphoma, or Burkitt lymphoma by inoculating the patient tumor cells into a human bone chip implanted into mice. We subjected the PDX models to histopathologic and phenotypical examination, sequencing, and drug efficacy analysis. Primary and acquired resistance to ibrutinib, an oral covalent inhibitor of Bruton tyrosine kinase, were investigated to elucidate the mechanisms underlying ibrutinib resistance and to identify drug treatments to overcome resistance. Results: The PDXs maintained the same biological, histopathologic, and immunophenotypical features, retained similar genetic mutations, and produced comparable drug responses with the original patient tumors. In the acquired ibrutinib-resistant PDXs, PLC-γ2, p65, and Src were downregulated; however, a PI3K signaling pathway member was upregulated. Inactivation of the PI3K pathway with the inhibitor idelalisib in combination with ibrutinib significantly inhibited the growth of the ibrutinib-resistant tumors. Furthermore, we used a PDX model derived from a clinically ibrutinib-relapsed patient to evaluate various therapeutic choices, ultimately eliminating the tumor cells in the patients peripheral blood. Conclusions: Our results demonstrate that the B-cell lymphoma PDX model is an effective system to predict and personalize therapies and address therapeutic resistance in B-cell lymphoma patients. Clin Cancer Res; 23(15); 4212–23. ©2017 AACR.


Archives of Pathology & Laboratory Medicine | 2018

Noninvasive Follicular Thyroid Neoplasms With Papillary-like Nuclear Features Are Genetically and Biologically Similar to Adenomatous Nodules and Distinct From Papillary Thyroid Carcinomas With Extensive Follicular Growth

Daniel Johnson; Larissa V. Furtado; Bradley C. Long; Chao Jie Zhen; Michelle N. Wurst; Ibro Mujacic; Sabah Kadri; Jeremy P. Segal; Tatjana Antic; Nicole A. Cipriani

CONTEXT - Proposed noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs), formerly noninvasive encapsulated papillary carcinoma, follicular variant (PTC-FV), is an indolent tumor with follicular growth and frequent RAS mutations. OBJECTIVE - To detect histologic and molecular differences separating NIFTP from follicular adenomas (FAs) and invasive carcinomas, particularly papillary carcinomas with extensive follicular growth (PTC-EFGs) and invasive encapsulated PTC-FV (IE-PTC-FV). DESIGN - Sixty-one tumors were reviewed histologically and reclassified into 32 NIFTPs (52%), 4 IE-PTC-FVs (7%), 14 PTC-EFGs (23%), and 11 FAs (18%). Next-generation sequencing for mutations in 50 genes was performed. Clinical outcomes were recorded. RESULTS - The NIFTPs and FAs were well circumscribed and unencapsulated. The FAs had bland nuclei, whereas the NIFTPs showed at least 2 of 3 (67%; sufficient) nuclear features (enlargement, irregular contours, chromatin clearing). The IE-PTC-FVs had follicular growth, sufficient nuclear features, and extensive capsular invasion. The PTC-EFGs had a median of 5% papillae with intrathyroidal invasion (broad-based, sclerotic, or small follicle growth patterns); intranuclear pseudoinclusions were present only in PTC-EFGs (9 of 14; 64%). Mutations included RAS in 20 of the 32 NIFTPs (62%), 4 of the 11 FAs (36%), and 3 of the 4 IE-PTC-FVs (75%); BRAF K601E in 1 NIFTP (3%); BRAF V600E in 5 PTC-EFGs (36%). No NIFTPs or FAs recurred or metastasized. All 4 IE-PTC-FVs (100%) had hematogenous metastasis. Two PTC-EFGs (14%) had lymphatic metastasis. CONCLUSIONS - The morphologic similarity and RAS mutations in FAs, NIFTPs, and IE-PTC-FVs supports the genetic similarity of those follicular neoplasms in contrast to the unique presence of BRAF V600E mutations in PTC-EFGs. Using strict diagnostic criteria supported by molecular testing, tumors with extensive follicular growth can be classified into follicular type or RAS-like (FA, NIFTP, IE-PTC-FV) versus papillary type or BRAF V600E-like (PTC-EFG).

Collaboration


Dive into the Jeremy P. Segal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pin Lu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge