Jeremy S. Luterbacher
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy S. Luterbacher.
Science | 2014
Jeremy S. Luterbacher; Jacqueline M. Rand; David Martin Alonso; Jeehoon Han; J. T. Youngquist; Christos T. Maravelias; Brian F. Pfleger; James A. Dumesic
Renewable Breakdown Routine In order to transform cellulose-containing biomass into liquid fuels such as ethanol, it is first necessary to break down the cellulose into its constituent sugars. Efforts toward this end have focused on chemical protocols using concentrated acid or ionic liquid solvents, and on biochemical protocols using cellulase enzymes. Luterbacher et al. (p. 277) now show that γ-valerolactone, a small molecule solvent that can itself be sourced renewably from biomass, promotes efficient and selective thermal breakdown of cellulose in the presence of dilute aqueous acid. A solvent sourced from biomass may offer a cost-effective means of breaking down cellulose for biofuels production. Widespread production of biomass-derived fuels and chemicals will require cost-effective processes for breaking down cellulose and hemicellulose into their constituent sugars. Here, we report laboratory-scale production of soluble carbohydrates from corn stover, hardwood, and softwood at high yields (70 to 90%) in a solvent mixture of biomass-derived γ-valerolactone (GVL), water, and dilute acid (0.05 weight percent H2SO4). GVL promotes thermocatalytic saccharification through complete solubilization of the biomass, including the lignin fraction. The carbohydrates can be recovered and concentrated (up to 127 grams per liter) by extraction from GVL into an aqueous phase by addition of NaCl or liquid CO2. This strategy is well suited for catalytic upgrading to furans or fermentative upgrading to ethanol at high titers and near theoretical yield. We estimate through preliminary techno-economic modeling that the overall process could be cost-competitive for ethanol production, with biomass pretreatment followed by enzymatic hydrolysis.
Green Chemistry | 2014
Jeremy S. Luterbacher; D. Martín Alonso; James A. Dumesic
This review presents an overview of the initial targeted chemical processing stages for conversion of lignocellulosic biomass to platform molecules that serve as intermediates for the production of carbon-based fuels and chemicals. We identify four classes of platform molecules that can be obtained in an initial chemical processing step: (i) sugars, (ii) dehydration products, (iii) polyols and (iv) lignin monomers. Special emphasis is placed on reporting and comparing parameters that affect process economics and/or sustainability, including product yields, amount of catalyst used, processing conditions, and product concentrations. We discuss the economic trade-offs associated with choices related to these parameters, depending on the product that is targeted. We also address the effects of real biomass on the ability to recover, recycle, and potentially regenerate catalysts and solvents used in the biomass conversion processes.
Science | 2016
Li Shuai; Masoud Talebi Amiri; Florent Héroguel; Yanding Li; Hoon Kim; Richard Meilan; Clint Chapple; John Ralph; Jeremy S. Luterbacher
Formaldehyde protects and serves The lignin found in plants is a desirable renewable feedstock for fuels and other useful compounds. Breaking down such a strong, energy-dense polymer, however, requires pretreatment of plant biomass under harsh conditions. These pretreatment steps often cause side reactions within the polymer itself, which lower the overall yields of lignin monomers. Shuai et al. used formaldehyde during pretreatment to block the reactive groups that lead to carbon-carbon linkages in lignin. This simple step stabilized lignin during pretreatment, resulting in dramatically improved yields. Science, this issue p. 329 Using formaldehyde protects lignin from the cross-reactions that lower yields during biomass processing. Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions.
Angewandte Chemie | 2014
Max A. Mellmer; Canan Sener; Jean Marcel R. Gallo; Jeremy S. Luterbacher; David Martin Alonso; James A. Dumesic
Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta.
Energy and Environmental Science | 2015
Jeremy S. Luterbacher; Ali Azarpira; Ali Hussain Motagamwala; Fachuang Lu; John Ralph; James A. Dumesic
We demonstrate an experimental approach for upgrading lignin that has been isolated from corn stover via biomass fractionation using γ-valerolactone (GVL) as a solvent. This GVL-based approach can be used in parallel with lignin upgrading to produce soluble carbohydrates at high yields (≥70%) from biomass without the use of enzymes, ionic liquids, or concentrated acids. The lignin was isolated after an initial hydrolysis step in which corn stover was treated in a high-solids batch reactor at 393 K for 30 min in a solvent mixture consisting of 80 wt% GVL and 20 wt% water. Lignin was isolated by precipitation in water and characterized by 2D HSQC NMR, showing that the extracted lignin was similar to native lignin, which can be attributed to the low acid level and the low extraction temperatures that are achievable using GVL as a solvent. This lignin was upgraded using a two-stage hydrogenolysis process over a Ru/C catalyst. The isolated lignin was first dissolved to form a mixture of 10% lignin, 80% THF, 8.5% H3PO4 and 1.5% H2O, and treated at 423 K under hydrogen. The THF was removed by evaporation and replaced with heptane, forming a biphasic mixture. This mixture was then treated at 523 K in the presence of Ru/C and H2. The resulting heptane phase contained soluble lignin-derived monomers corresponding to 38% of the carbon in the original lignin. By adding 5% methanol during the second catalytic step, we produced additional monomers containing methyl esters and increased carbon yields to 48%. This increase in yield can be attributed to stabilization of carboxylic acid intermediates by esterification. The yield reported here is comparable to yields obtained with native lignin and is much higher than yields obtained with lignin isolated by other processes. These results suggest that GVL-based biomass fractionation could facilitate the integrated conversion of all three biomass fractions.
Chemsuschem | 2016
Li Shuai; Jeremy S. Luterbacher
Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes.
Biotechnology and Bioengineering | 2010
Jeremy S. Luterbacher; Jefferson W. Tester; Larry P. Walker
A high pressure (200 bar) CO2–H2O process was developed for pretreating lignocellulosic biomass at high‐solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co‐culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250°C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H2O‐rich liquid (hydrothermal) phase and a CO2‐rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5‐hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170°C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160°C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover. Biotechnol. Bioeng. 2010;107: 451–460.
Green Chemistry | 2014
Max A. Mellmer; David Martin Alonso; Jeremy S. Luterbacher; Jean Marcel R. Gallo; James A. Dumesic
The use of γ-valerolactone as solvent for acid-catalyzed biomass hydrolysis reactions increases reaction rates compared to reactions carried out in water. In addition, a low apparent activation energy for biomass hydrolysis and a higher value for monosaccharide conversion are displayed using GVL as solvent, leading to favorable energetics for monosaccharide production from biomass.
Chemcatchem | 2014
Ronen Weingarten; Alexandra Rodriguez‐Beuerman; Fei Cao; Jeremy S. Luterbacher; David Martin Alonso; James A. Dumesic; George W. Huber
Herein, we report a new reaction pathway to produce hydroxymethylfurfural (HMF) from cellulose under mild reaction conditions (140–190 °C; 5 mM H2SO4) in polar aprotic solvents (i.e. THF) without the presence of water. In this system, levoglucosan is the major decomposition product of cellulose, followed by dehydration to produce HMF. Glucose, levulinic acid, and formic acid are also produced as a result of side reactions with water, which is a by‐product of dehydration. The turnover frequency for cellulose conversion increases as the water content in the solvent decreases, with conversion rates in THF being more than twenty times higher than those in water. The highest HMF yield from cellulose was 44 % and the highest combined yield of HMF and levulinic from cellulose was 53 %, which are nearly comparable to yields obtained in ionic liquids or biphasic systems. Moreover, the use of a low boiling point solvent, such as THF, facilitates recovery of HMF in downstream processes.
Bioresource Technology | 2015
Jeehoon Han; Jeremy S. Luterbacher; David Martin Alonso; James A. Dumesic; Christos T. Maravelias
The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of