Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Smith is active.

Publication


Featured researches published by Jeremy Smith.


Chemical Communications | 2012

A “zig-zag” naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells

Stephen Loser; Hiroyuki Miyauchi; Jonathan W. Hennek; Jeremy Smith; Chun Huang; Antonio Facchetti; Tobin J. Marks

A solution-processed small molecule utilizing a novel 5,10-bis((2-ethylhexyl)oxy)-naphtho[2,3-b:6,7-b0]dithiophene [corrected] zig-zag core (zNDT) exhibits high hole mobility, upshifted frontier MO energies, and enhanced photovoltaic cell short-circuit currents, fill-factors, and power conversion efficiencies (4.7%) versus the linear NDT isomer.


Journal of the American Chemical Society | 2013

Oxygen “Getter” Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X = Ga, Sc, Y, La) Transistors

Jonathan W. Hennek; Jeremy Smith; Aiming Yan; Myung-Gil Kim; Wei Zhao; Vinayak P. Dravid; Antonio Facchetti; Tobin J. Marks

In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion (oxygen getter), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.


Nano Letters | 2012

Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

Seok Min Yoon; Sylvia J. Lou; Stephen Loser; Jeremy Smith; Lin X. Chen; Antonio Facchetti; Tobin J. Marks

Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.


Physical Chemistry Chemical Physics | 2013

Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors

Antonio Guerrero; Stephen Loser; Germà Garcia-Belmonte; Carson J. Bruns; Jeremy Smith; Hiroyuki Miyauchi; Samuel I. Stupp; Juan Bisquert; Tobin J. Marks

Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.


Nano Letters | 2015

Large-Area, Low-Voltage, Antiambipolar Heterojunctions from Solution-Processed Semiconductors

Deep Jariwala; Vinod K. Sangwan; Jung Woo Ted Seo; Weichao Xu; Jeremy Smith; Chris H. Kim; Lincoln J. Lauhon; Tobin J. Marks; Mark C. Hersam

The emergence of semiconducting materials with inert or dangling bond-free surfaces has created opportunities to form van der Waals heterostructures without the constraints of traditional epitaxial growth. For example, layered two-dimensional (2D) semiconductors have been incorporated into heterostructure devices with gate-tunable electronic and optical functionalities. However, 2D materials present processing challenges that have prevented these heterostructures from being produced with sufficient scalability and/or homogeneity to enable their incorporation into large-area integrated circuits. Here, we extend the concept of van der Waals heterojunctions to semiconducting p-type single-walled carbon nanotube (s-SWCNT) and n-type amorphous indium gallium zinc oxide (a-IGZO) thin films that can be solution-processed or sputtered with high spatial uniformity at the wafer scale. The resulting large-area, low-voltage p-n heterojunctions exhibit antiambipolar transfer characteristics with high on/off ratios that are well-suited for electronic, optoelectronic, and telecommunication technologies.


ACS Applied Materials & Interfaces | 2013

Synergistic Approach to High-Performance Oxide Thin Film Transistors Using a Bilayer Channel Architecture

Xinge Yu; Nanjia Zhou; Jeremy Smith; Hui Lin; Katie Stallings; Junsheng Yu; Tobin J. Marks; Antonio Facchetti

We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance.


Journal of Materials Chemistry C | 2014

The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives

Alberto Riaño; P. Mayorga Burrezo; María J. Mancheño; Amod Timalsina; Jeremy Smith; Antonio Facchetti; Tobin J. Marks; J.T. López Navarrete; José L. Segura; Juan Casado; R. Ponce Ortiz

We have synthesized two novel dicyanovinylene-substituted DPP–oligothiophene semiconductors, DPP-4T-2DCV and 2DPP-6T-2DCV. In these materials, the combination of an extended oligothiophene conjugated skeleton with the strong electron-withdrawing DPP–dicyanovinylene groups results in semiconductors exhibiting ambipolar TFT response with reasonably balanced electron and hole mobilities of up to 0.16 cm2 V−1 s−1 and 0.02 cm2 V−1 s−1, respectively. Furthermore, no thermal annealing of the semiconductors is necessary to afford high mobility, making them ideal candidates for low cost fabrication of devices on inexpensive plastic foils. Analysis of the molecular and electronic structures by means of electronic and vibrational spectroscopy techniques, electrochemistry and DFT calculations highlights a unique electronic scenario in these semiconductors, where the external cyano groups are isolated from the π-conjugated core. The appearance of these unusual π-systems explains the similar electron mobilities recorded for both DPP-4T-2DCV and 2DPP-6T-2DCV, despite their different skeletal dimensions. Furthermore, it also supports the appearance of moderately balanced hole and electron mobilities in semiconductors with such large accumulation of acceptor units. Transient spectroscopy measurements indicate the appearance of triplet excited state species, which may be related to the semiconductors low performances in OPVs, due to the intrusion of triplets in the carrier formation process.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

Nanjia Zhou; Myung-Gil Kim; Stephen Loser; Jeremy Smith; Hiroyuki Yoshida; Xugang Guo; Charles Kiseok Song; Hosub Jin; Zhihua Chen; Seok Min Yoon; Arthur J. Freeman; R. P. H. Chang; Antonio Facchetti; Tobin J. Marks

Significance The development of system-independent and non–material-specific interfacial layers (IFLs) to facilitate efficient charge collection is of crucial importance for organic photovoltaic (OPV) cell performance. Here we report a broadly applicable IFL design strategy using solution-processed amorphous oxide semiconductors where their energetics can be tuned by varying the elemental composition without varying the surface chemistry. Based on the energetic requirements of specific organic active layers, these oxides can be readily designed with dialed-in energy levels. Using OPV solar cells as a test bed, we use a broad series of photoactive bulk heterojunction materials to demonstrate the effectiveness of these electronically tunable oxides for optimizing the performance of diverse OPV material sets. In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.


ACS Applied Materials & Interfaces | 2016

High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes

Ethan B. Secor; Jeremy Smith; Tobin J. Marks; Mark C. Hersam

Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.


Journal of Materials Chemistry | 2017

Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells

Stephen Loser; Sylvia J. Lou; Brett M. Savoie; Carson J. Bruns; Amod Timalsina; Matthew J. Leonardi; Jeremy Smith; Tobias Harschneck; Riccardo Turrisi; Nanjia Zhou; Charlotte L. Stern; Amy A. Sarjeant; Antonio Facchetti; R. P. H. Chang; Samuel I. Stupp; Mark A. Ratner; Lin X. Chen; Tobin J. Marks

Improved understanding of fundamental structure–property relationships, particularly the effects of molecular shape and intermolecular packing on film morphology and active layer charge transport characteristics, enables more rational synthesis of new p-type small molecules. Here we investigate a series of small molecules consisting of an acene-based electron-rich core flanked by one or two electron-deficient diketopyrrolopyrrole (DPP) moieties. Through minor changes in the molecule structures, measurable variations in the crystal structure and sizable differences in macroscopic properties are achieved. The molecular symmetry as well as the conformation of the side chains affects the unit cell packing density and strength of the intermolecular electronic coupling in single crystals of all molecules in this series. The addition of a second DPP unit to the benzodithiophene (BDT) core increases molecular planarity leading to decreased reorganization energy, strong cofacial coupling, and moderate hole mobility (2.7 × 10−4 cm2 V−1 s−1). Increasing the length of the acene core from benzodithiophene to naphthodithiophene (NDT) results in a further reduction in reorganization energy and formation of smaller crystalline domains (∼11 nm) when mixed with PCBM. Decreasing the aspect ratio of the core using a “zig-zag” naphthodithiophene (zNDT) isomer results in the highest hole mobility of 1.3 × 10−3 cm2 V−1 s−1 due in part to tight lamellar (d = 13.5 A) and π–π stacking (d = 3.9 A). The hole mobility is directly correlated with the short-circuit current (11.7 mA cm−2) and solar cell efficiency (4.4%) of the highest performing zNDT:PCBM device. For each of these small molecules the calculated π-coupling constant is correlated with the hole mobility as a function of crystal structure and orientation indicating the importance of designing molecules that create extended crystalline networks with maximal π-orbital overlap.

Collaboration


Dive into the Jeremy Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nanjia Zhou

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin X. Chen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zeng

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge