Jeremy T. Miyauchi
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy T. Miyauchi.
Journal of Biological Chemistry | 2015
Matthew W. Elmes; Martin Kaczocha; William T. Berger; KwanNok Leung; Brian P. Ralph; Liqun Wang; Joseph M. Sweeney; Jeremy T. Miyauchi; Stella E. Tsirka; Iwao Ojima; Dale G. Deutsch
Background: Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) modulate endocannabinoid tone in vivo through unknown mechanisms. Results: THC and CBD bind to fatty acid-binding proteins (FABPs) and reduce endocannabinoid metabolism. Neither THC nor CBD inhibit human fatty acid amide hydrolase activity. Conclusion: FABPs are intracellular transporters of THC and CBD. Significance: These findings identify a new mechanism by which phytocannabinoids influence endocannabinoid signaling. Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.
Neural Plasticity | 2013
Kyungmin Ji; Jeremy T. Miyauchi; Stella E. Tsirka
Synaptic plasticity is critical for elaboration and adaptation in the developing and developed brain. It is well established that astrocytes play an important role in the maintenance of what has been dubbed “the tripartite synapse”. Increasing evidence shows that a fourth cell type, microglia, is critical to this maintenance as well. Microglia are the resident macrophages of the central nervous system (CNS). Because of their well-characterized inflammatory functions, research has primarily focused on their innate immune properties. The role of microglia in the maintenance of synapses in development and in homeostasis is not as well defined. A number of significant findings have shed light on the critical role of microglia at the synapse. It is becoming increasingly clear that microglia play a seminal role in proper synaptic development and elimination.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Stephen A Schepel; Andrew J. Fox; Jeremy T. Miyauchi; Tiffany Sou; Jason D. Yang; Kenneth Lau; Austin W. Blum; Linda K. Nicholson; Felix Tiburcy; Ronald J. Nachman; Peter M. Piermarini; Klaus W. Beyenbach
In the past, we have used the kinins of the cockroach Leucophaea (the leucokinins) to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using the kinins of Aedes (the aedeskinins), we have found that in isolated Aedes Malpighian tubules all three aedeskinins (1 microM) significantly 1) increased the rate of fluid secretion (V(S)), 2) hyperpolarized the basolateral membrane voltage (V(bl)), and 3) decreased the input resistance (R(in)) of principal cells, consistent with the known increase in the Cl(-) conductance of the paracellular pathway in Aedes Malpighian tubules. Aedeskinin-III, studied in further detail, significantly increased V(S) with an EC(50) of 1.5 x 10(-8) M. In parallel, the Na(+) concentration in secreted fluid significantly decreased, and the K(+) concentration significantly increased. The concentration of Cl(-) remained unchanged. While the three aedeskinins triggered effects on V(bl), R(in), and V(S), synthetic kinin analogs, which contain modifications of the COOH-terminal amide pentapeptide core sequence critical for biological activity, displayed variable effects. For example, kinin analog 1578 significantly stimulated V(S) but had no effect on V(bl) and R(in), whereas kinin analog 1708 had no effect on V(S) but significantly affected V(bl) and R(in). These observations suggest separate signaling pathways activated by kinins. One triggers the electrophysiological response, and the other triggers fluid secretion. It remains to be determined whether the two signaling pathways emanate from a single kinin receptor via agonist-directed signaling or from a differentially glycosylated receptor. Occasionally, Malpighian tubules did not exhibit a detectable response to natural and synthetic kinins. Hypothetically, the expression of the kinin receptor may depend on developmental, nutritional, and/or reproductive signals.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011
Peter M. Piermarini; Rebecca M. Hine; Matthew Schepel; Jeremy T. Miyauchi; Klaus W. Beyenbach
The K,Cl cotransporters (KCCs) of the SLC12 superfamily play critical roles in the regulation of cell volume, concentrations of intracellular Cl(-), and epithelial transport in vertebrate tissues. To date, the role(s) of KCCs in the renal functions of mosquitoes and other insects is less clear. In the present study, we sought molecular and functional evidence for the presence of a KCC in renal (Malpighian) tubules of the mosquito Aedes aegypti. Using RT-PCR on Aedes Malpighian tubules, we identified five alternatively spliced partial cDNAs that encode putative SLC12-like KCCs. The majority transcript is AeKCC1-A(1); its full-length cDNA was cloned. After expression of the AeKCC1-A protein in Xenopus oocytes, the Cl(-)-dependent uptake of (86)Rb(+) is 1) activated by 1 mM N-ethylmaleimide and cell swelling, 2) blocked by 100 μM dihydroindenyloxyalkanoic acid (DIOA), and 3) dependent upon N-glycosylation of AeKCC1-A. In Aedes Malpighian tubules, AeKCC1 immunoreactivity localizes to the apical brush border of principal cells, which are the predominant cell type in the epithelium. In vitro physiological assays of Malpighian tubules show that peritubular DIOA (10 μM): 1) significantly reduces both the control and diuretic rates of transepithelial fluid secretion and 2) has negligible effects on the membrane voltage and input resistance of principal cells. Taken together, the above observations indicate the presence of a KCC in the apical membrane of principal cells where it participates in a major electroneutral transport pathway for the transepithelial secretion of fluid in this highly electrogenic epithelium.
Brain Behavior and Immunity | 2016
Luisa Torres; Joan Danver; Kyungmin Ji; Jeremy T. Miyauchi; Danling Chen; Maria E. Anderson; Brian L. West; John K. Robinson; Stella E. Tsirka
Microglia are active players in inflammation, but also have important supporting roles in CNS maintenance and function, including modulation of neuronal activity. We previously observed an increase in the frequency of excitatory postsynaptic current in organotypic brain slices after depletion of microglia using clodronate. Here, we describe that local hippocampal depletion of microglia by clodronate alters performance in tests of spatial memory and sociability. Global depletion of microglia by high-dose oral administration of a Csf1R inhibitor transiently altered spatial memory but produced no change in sociability behavior. Microglia depletion and behavior effects were both reversible, consistent with a dynamic role for microglia in the regulation of such behaviors.
Oncotarget | 2016
Jeremy T. Miyauchi; Danling Chen; Matthew Choi; Jillian C. Nissen; Kenneth R. Shroyer; Snezana Djordevic; Ian Zachary; David L. Selwood; Stella E. Tsirka
Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumors spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1s b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Samir Haj-Dahmane; Roh-Yu Shen; Matthew W. Elmes; Keith M. Studholme; Martha P. Kanjiya; Diane Bogdan; Panayotis K. Thanos; Jeremy T. Miyauchi; Stella E. Tsirka; Dale G. Deutsch; Martin Kaczocha
Significance Endocannabinoids (eCBs), a family of active lipids, modulate synaptic transmission in the brain. Research conducted over the past decades has delineated the mechanisms by which eCBs control synaptic function. However, how these lipids are transported through the aqueous milieu of the synaptic cleft to engage cannabinoid receptors and ion channels remains a long-standing question in the field of eCB research. Here, we identify fatty-acid–binding protein 5 as a modulator of retrograde eCB signaling in the brain, which mediates the synaptic transport of the eCB 2-arachidonoyl glycerol. This protein may also control the synaptic transport of other eCBs and lipid-signaling molecules in the brain. Endocannabinoids (eCBs) are lipid-signaling molecules involved in the regulation of numerous behaviors and physiological functions. Released by postsynaptic neurons, eCBs mediate retrograde modulation of synaptic transmission and plasticity by activating presynaptic cannabinoid receptors. While the cellular mechanisms by which eCBs control synaptic function have been well characterized, the mechanisms controlling their retrograde synaptic transport remain unknown. Here, we demonstrate that fatty-acid–binding protein 5 (FABP5), a canonical intracellular carrier of eCBs, is indispensable for retrograde eCB transport in the dorsal raphe nucleus (DRn). Thus, pharmacological inhibition or genetic deletion of FABP5 abolishes both phasic and tonic eCB-mediated control of excitatory synaptic transmission in the DRn. The blockade of retrograde eCB signaling induced by FABP5 inhibition is not mediated by impaired cannabinoid receptor function or reduced eCB synthesis. These findings indicate that FABP5 is essential for retrograde eCB signaling and may serve as a synaptic carrier of eCBs at central synapses.
Journal of Neurology | 2018
Jeremy T. Miyauchi; Stella E. Tsirka
Gliomas are primary malignancies of the brain. Tumors are staged based on malignancy, nuclear atypia, and infiltration of the surrounding brain parenchyma. Tumors are often diagnosed once patients become symptomatic, at which time the lesion is sizable. Glioblastoma (grade IV glioma) is highly aggressive and difficult to treat. Most tumors are diagnosed de novo. The gold standard of therapy, implemented over a decade ago, consists of fractionated radiotherapy and temozolomide, but unfortunately, chemotherapeutic resistance arises. Recurrence is common after initial therapy. The tumor microenvironment plays a large role in cancer progression and its manipulation can repress progression. The advent and implementation of immunotherapy, via manipulation and activation of cytotoxic T cells, have had an outstanding impact on reducing morbidity and mortality associated with peripheral cancers under certain clinical circumstances. An arsenal of immunotherapeutics is currently under clinical investigation for safety and efficacy in the treatment of newly diagnosed and recurrent high grade gliomas. These immunotherapeutics encompass antibody–drug conjugates, autologous infusions of modified chimeric antigen receptor expressing T cells, peptide vaccines, autologous dendritic cell vaccines, immunostimulatory viruses, oncolytic viruses, checkpoint blockade inhibitors, and drugs which alter the behavior of innate immune cells. Effort is focusing on determining which patient populations will benefit the most from these treatments and why. Research addressing synergism between treatment options is gaining attention. While advances in the treatment of glioma stagnated in the past, we may see a considerable evolution in the management of the disease in the upcoming years.
Cancer Research | 2017
Jeremy T. Miyauchi; Michael D. Caponegro; Danling Chen; Matthew Choi; Melvin Li; Stella E. Tsirka
Glioma-associated microglia and macrophages (GAM), which infiltrate high-grade gilomas, constitute a major cellular component of these lesions. GAM behavior is influenced by tumor-derived cytokines that suppress initial antitumorigenic properties, causing them to support tumor growth and to convert and suppress adaptive immune responses to the tumor. Mice that lack the transmembrane receptor neuropilin-1 (Nrp1), which modulates GAM immune polarization, exhibit a decrease in glioma volumes and neoangiogenesis and an increase in antitumorigenic GAM infiltrate. Here we show that replacing the peripheral macrophage populations of wild-type mice with Nrp1-depleted bone marrow-derived macrophages (BMDM) confers resistance to the development of glioma. This resistance occurred in a similar fashion seen in mice in which all macrophages lacked Nrp1 expression. Tumors had decreased volumes, decreased vascularity, increased CTL infiltrate, and Nrp1-depleted BMDM adopted a more antitumorigenic phenotype relative to wild-type GAMs within the tumors. Mice with Nrp1-deficient microglia and wild-type peripheral macrophages showed resistance to glioma development and had higher microglial infiltrate than mice with wild-type GAMs. Our findings show how manipulating Nrp1 in either peripheral macrophages or microglia reprograms their phenotype and their pathogenic roles in tumor neovascularization and immunosuppression.Significance: This study highlights the proangiogenic receptor neuropilin 1 in macrophages and microglial cells in gliomas as a pivotal modifier of tumor neovascularization and immunosuppression, strengthening emerging evidence of the functional coordination of these two fundamental traits of cancer. Cancer Res; 78(3); 685-94. ©2017 AACR.
Toxicology Research | 2016
Crystal S. Lewis; Luisa Torres; Jeremy T. Miyauchi; Cyrus Rastegar; Jonathan M. Patete; Jacqueline Smith; Stanislaus S. Wong; Stella E. Tsirka
Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinsons and Alzheimers disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB labeled-α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure induce the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 µg/mL after 48 hours of incubation, the in vitro and in vivo internalization of RhB labeled-α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.