Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy W. Chopek is active.

Publication


Featured researches published by Jeremy W. Chopek.


Mechanisms of Ageing and Development | 2010

Life-long caloric restriction: Effect on age-related changes in motoneuron numbers, sizes and apoptotic markers.

Jeremy W. Chopek; Phillip F. Gardiner

The first purpose of this study was to determine the effect of advanced age (31 months) on the number of motoneurons in the lumbar enlargement of the rat and to determine if motoneurons die via apoptosis with age. The second purpose was to determine if caloric restriction (CR) would attenuate any observed age-related changes in motoneuron numbers or markers of apoptosis and ROS damage. Using immunohistochemistry to identify choline acetyltransferase (ChAT) - positive motoneurons in the ventro-lateral horn larger than 15μm in diameter and having a clear soma and nucleus were sized and counted. Western blots were used to quantify markers of ROS, apoptosis and autophagy in the ventral horn of the lumbar enlargement. The results suggest that the total number of motoneurons in the rat lumbar enlargement does not significantly decrease with age. Also at the time of sacrifice, aged motoneurons were actively undergoing apoptosis through the intrinsic pathway, in a caspase-dependent manner. CR was able to attenuate the increase in body weight, body weight/muscle mass ratio and the level of activate caspase-3 associated with age. CR also reduced the level of heat shock protein 27, oxoguanine glycosylase 1, cytochrome c and LC3B-I.


The Journal of Physiology | 2015

Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat

Christopher W. MacDonell; Kevin E. Power; Jeremy W. Chopek; Kalan Gardiner; Phillip F. Gardiner

This is the first report, in adult decerebrate rats, to examine intracellular hindlimb motoneurone properties during quiescence, fictive locomotion and a tonic period immediately before fictive locomotion that is characterized by increased peripheral nerve activity. It is shown for the first time during fictive locomotion that motoneurones become more responsive in the tonic period, suggesting that the motoneurone pool becomes primed before patterned motor output commences. Spike frequency adaptation exists in quiescence and during fictive locomotion during constant excitation with injected current but not during centrally driven fictive locomotion. Motoneurones within the extensor motor pool show changes in excitability even when they are not directly involved in locomotion. The data show increased responsiveness of motoneurones during locomotion via a lowered threshold for spike initiation and decreased rheobase.


Journal of Neurophysiology | 2013

Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation

Jeremy W. Chopek; Christopher W. MacDonell; Kevin E. Power; Kalan Gardiner; Phillip F. Gardiner

The purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves (P < 0.05). In the spinalized preparation, the MSR was significantly increased in both the tibial and peroneal nerves with the latter increasing more than the former (5.7 vs. 3.6 times; P < 0.05). Intracellular motoneuron experiments demonstrated that rheobase decreased, while input resistance, afterhyperpolarization amplitude, and the firing rate at a given current injection increased in motoneurons following quipazine administration with no differences between extensor and flexor motoneurons. Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.


Journal of Neurotrauma | 2014

Daily Passive Cycling Attenuates the Hyperexcitability and Restores the Responsiveness of the Extensor Monosynaptic Reflex to Quipazine in the Chronic Spinally Transected Rat

Jeremy W. Chopek; Christopher W. MacDonell; Kalan Gardiner; Phillip F. Gardiner

Activity-based interventions such as locomotor training or passive cycling have a positive influence on the spinal circuitry and recovery following a spinal cord injury (SCI). The use of quipazine in combination with exercise training has demonstrated a greater functional recovery than has exercise training alone. However, the influence of exercise or training on the responsiveness of the spinal cord to quipazine has not been examined following a chronic spinal transection. The purpose of this study was to characterize the flexor and extensor monosynaptic reflex (MSR) response pre- and post-quipazine in chronic complete spinally transected rats that either underwent daily passive cycling for 3 months or did not receive passive cycling. Following a chronic spinal transection, the extensor MSR demonstrated a hyperreflexive response (fivefold increase) to afferent stimuli, and did not respond to quipazine injection. With daily passive cycling, the extensor MSR hyperexcitability was attenuated, and the MSR amplitude increased 72% following quipazine injection (p<0.004), which was comparable to the extensor MSR response (94%) in the control group. For both chronic spinal transection groups, the flexor MSR amplitudes were not altered following quipazine injection, whereas in the control group the flexor MSR amplitude increased 86% in response to quipazine (p<0.004). These results demonstrate that passive cycling attenuates the hyperreflexive response of the extensor MSR following a chronic SCI, and restores the MSR response to quipazine.


Journal of Neurophysiology | 2015

Serotonin receptor and KCC2 gene expression in lumbar flexor and extensor motoneurons posttransection with and without passive cycling

Jeremy W. Chopek; Patricia C. Sheppard; Kalan Gardiner; Phillip F. Gardiner

Sacrocaudal motoneuron gene expression is altered following a spinal transection. Of interest here is the regulation of serotonin (5-HT) receptors (R), glutamate receptor, metabotropic 1 (mGluR1), and potassium-chloride cotransporter (KCC2), which mediate motoneuron excitability, locomotor recovery, and spasticity posttransection. The examination of these genes in lumbar motoneurons posttransection has not been studied, which is necessary for developing potential pharmacological interventions aimed at restoring locomotion and/or reducing spasticity. Also, if activity is to be used to promote recovery or reduce spasticity postinjury, a further examination of neuromuscular activity on gene expression posttransection is warranted. The purpose of this study was to examine motoneuronal gene expression of 5-HT receptors, KCC2, and mGluR1 at 3 mo following a complete thoracic spinal cord transection, with and without the inclusion of daily passive cycling. Physiological hindlimb extensor and flexor motoneurons were differentially identified with two retrograde fluorescent tracers, allowing for the identification and separate harvesting of extensor and flexor motoneurons with laser capture microdissection and the subsequent examination of mRNA content using quantitative RT-PCR analysis. We demonstrate that posttransection 5-HT1AR, 5-HT2CR, and mGluR1 expression was downregulated, whereas the 5-HT2AR was upregulated. These alterations in gene expression were observed in both flexor and extensor motoneurons, whereas passive cycling influenced gene expression in extensor but not flexor motoneurons. Passive cycling in extensor motoneurons further enhanced 5-HT2AR expression and increased 5-HT7R and KCC2 expression. Our results demonstrate that passive cycling influences serotonin receptor and KCC2 gene expression and that extensor motoneurons compared with flexor motoneurons may be more plastic to activity-based interventions posttransection.


Experimental Neurology | 2015

Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions

Kristine C. Cowley; Brian J. MacNeil; Jeremy W. Chopek; Scott Sutherland; Brian J. Schmidt

Using an in vitro neonatal rat brainstem-spinal cord preparation, we previously showed that cervicothoracic propriospinal neurons contribute to descending transmission of the bulbospinal locomotor command signal, and neurochemical excitation of these neurons facilitates signal propagation. The present study examined the relevance of these observations to adult rats in vivo. The first aim was to determine the extent to which rats are able to spontaneously recover hindlimb locomotor function in the presence of staggered contralateral hemisections (left T2-4 and right T9-11) designed to abolish all long direct bulbospinal projections. The second aim was to determine whether neurochemical excitation of thoracic propriospinal neurons in such animals facilitates hindlimb stepping. In the absence of intrathecal drug injection, all animals (n=24) displayed some degree of hindlimb recovery ranging from weak ankle movements to brief periods of unsupported hindlimb stepping on the treadmill. The effect of boluses of neurochemicals delivered via an intrathecal catheter (tip placed midway between the rostral and caudal thoracic hemisections) was examined at post-lesion weeks 3, 6 and 9. Quipazine was particularly effective facilitating hindlimb stepping. Subsequent complete transection above the rostral (n=3) or caudal (n=2) hemisections at week 9 had no consistent effect on drug-free locomotor performance, but the facilitatory effect of drug injection decreased in 4/5 animals. Two animals underwent complete transection at T3 as the first and only surgery and implantation of two intrathecal catheters targeted to the mid-thoracic and lumbar regions, respectively. A similar facilitatory effect on stepping was observed in response to drugs administered via either catheter. The results indicate that partial spontaneous recovery of stepping occurs in adult rats after abolishing all long direct bulbospinal connections, in contrast to previous studies suggesting that hindlimb stepping after dual hemisections either does not occur or is observed only if the second hemisection surgery is delayed relative to the first. The results support the hypothesis that artificial modulation of propriospinal neuron excitability may facilitate recovery of motor function after spinal cord injury. However, whether this facilitation is due to enhanced transmission of a descending locomotor signal or is the result of excitation of thoracolumbar circuits independent of supraspinal influence, requires further study.


European Journal of Neuroscience | 2018

Altered transcription of glutamatergic and glycinergic receptors in spinal cord dorsal horn following spinal cord transection is minimally affected by passive exercise of the hindlimbs

Jeremy W. Chopek; Christopher W. MacDonell; Patricia C. Shepard; Kalan Gardiner; Phillip F. Gardiner

Gene expression is altered following a spinal transection (STx) in both motor and sensory systems. Exercise has been shown to influence gene expression in both systems post‐STx. Gene expression alterations have also been shown in the dorsal root ganglia and nociceptive laminae of the spinal cord following either an incomplete spinal cord injury (SCI) or a contusive SCI. However, the effect of STx and exercise on gene expression in spinal cord laminae I‐III has not fully been examined. Therefore, the purpose of this study was to determine whether gene expression in laminae I‐III is altered following STx and determine whether superimposed passive exercise of the hindlimbs would influence gene expression post‐STx in laminae I‐III. Laser capture microdissection was used to selectively harvest laminae I‐III of lumbar spinal cord sections, and quantitative RT‐PCR was used to examine relative expression of 23 selected genes in samples collected from control, STx and STx plus exercise rats. We demonstrate that post‐STx, gene expression for metabotropic glutamate receptors 1, 5 and 8 were up‐regulated, whereas ionotropic glutamatergic receptor (Glur2) and glycinergic subunit GLRA1 expression was down‐regulated. Daily exercise attenuated the down‐regulation of Glur2 gene expression in laminae I‐III. Our results demonstrate that in a STx model, gene expression is altered in laminae I‐III and that although passive exercise influences gene expression in both the motor and sensory systems, it had a minimal effect on gene expression in laminae I‐III post‐STx.


Journal of Neurophysiology | 2017

α-Motoneurons maintain biophysical heterogeneity in obesity and diabetes in Zucker rats

Christopher W. MacDonell; Jeremy W. Chopek; Kalan Gardiner; Phillip F. Gardiner

Small-diameter sensory dysfunction resulting from diabetes has received much attention in the literature, whereas the impact of diabetes on α-motoneurons (MN) has not. In addition, the chance of developing insulin resistance and diabetes is increased in obesity. No study has examined the impact of obesity or diabetes on the biophysical properties of MN. Lean Zucker rats and Zucker diabetic fatty (ZDF) rats were separated into lean, obese (ZDF fed standard chow), and diabetic (ZDF fed high-fat diet that led to diabetes) groups. Glass micropipettes recorded hindlimb MN properties from identified flexor and extensor MN. MN were separated within their groups on the basis of input conductance, which created high- and low-input conductance subpopulations for each. A significant shorter (20%) afterhyperpolarization half-decay (AHP1/2) was found in low-conductance MN for the diabetic group only, whereas AHP½ tended to be shorter in the obese group (19%). Significant positive correlations were found among rheobase and input conductance for both lean and obese animals. No differences were found between the groups for afterhyperpolarization amplitude (AHPamp), input conductance, rheobase, or any of the rhythmic firing properties (frequency-current slope and spike-frequency adaptation index). MN properties continue to be heterogeneous in obese and diabetic animals. Obesity does not seem to influence lumbar MN. Despite the resistance of MN to the impact of diabetes, the reduced AHP1/2 decay and the tendency for a reduction in AHPamp may be the first sign of change to MN function.NEW & NOTEWORTHY Knowledge about the impact of obesity and diabetes on the biophysical properties of motoneurons is lacking. We found that diabetes reduces the duration of the afterhyperpolarization and that motoneuron function is unchanged by obesity. A reduced afterhyperpolarization may impact discharge characteristics and may be the first sign of change to motoneuron function.


Archive | 2015

posttransection with and without passive cycling lumbar flexor and extensor motoneurons Serotonin receptor and KCC2 gene expression in

Jeremy W. Chopek; Patricia C. Sheppard; Kalan Gardiner; F Phillip


Archive | 2015

Thoraco-Lumbar Spinal Cord Receptors in the 1A , and 5-HT 2A , 5-HT 7Innervation and Co-Localization of 5-HT Locomotor-Activated Neurons of the Cat. I.

Dawn M. G. Johnson; Mirta I. Riesgo; Alberto Pinzon; Gareth B. Miles; Keith T. Sillar; Zaghloul Ahmed; Andrzej Wieraszko; Jeremy W. Chopek; Patricia C. Sheppard; Kalan Gardiner; Phillip F. Gardiner

Collaboration


Dive into the Jeremy W. Chopek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge