Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Woods is active.

Publication


Featured researches published by Jeremy Woods.


Philosophical Transactions of the Royal Society B | 2010

Competition for land.

Pete Smith; Peter J. Gregory; Detlef P. van Vuuren; Michael Obersteiner; Petr Havlik; Mark Rounsevell; Jeremy Woods; Elke Stehfest; Jessica Bellarby

A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future.


The Lancet | 2007

Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change

Andy Haines; Kirk R. Smith; Dennis Anderson; Paul R. Epstein; Anthony J. McMichael; Ian Roberts; Paul Wilkinson; James Woodcock; Jeremy Woods

The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.


Philosophical Transactions of the Royal Society B | 2010

Energy and the food system

Jeremy Woods; Adrian G. Williams; John K. Hughes; Mairi J. Black; Richard J. Murphy

Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.


Journal of the Royal Society Interface | 2012

Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains

Susan Tarka Sanchez; Jeremy Woods; Mark Akhurst; Matthew Brander; Michael O'Hare; Terence P. Dawson; Robert Edwards; Adam J. Liska; Rick Malpas

The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.


Nature | 2011

Perspective: A new hope for Africa.

Lee R. Lynd; Jeremy Woods

Bioenergy could help bring food security to the worlds poorest continent, say Lee R. Lynd and Jeremy Woods.


Gcb Bioenergy | 2017

Reconciling food security and bioenergy: priorities for action

Keith L. Kline; Siwa Msangi; Virginia H. Dale; Jeremy Woods; Glaucia Mendes Souza; Patricia Osseweijer; Joy S. Clancy; Jorge Hilbert; Francis X. Johnson; Pc McDonnell; Harriet K. Mugera

Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals. Effective food security programs begin by clearly defining the problem and asking, ‘What can be done to assist people at high risk?’ Simplistic global analyses, headlines, and cartoons that blame biofuels for food insecurity may reflect good intentions but mislead the public and policymakers because they obscure the main drivers of local food insecurity and ignore opportunities for bioenergy to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near‐ and long‐term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include the following: (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy need not compete for land and, instead, should be integrated to improve resource management, (3) investing in technology, rural extension, and innovations to build capacity and infrastructure, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders to identify and assess specific opportunities for biofuels to improve food security. Systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.


Interface Focus | 2011

A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

Lee R. Lynd; Ramlan Abdul Aziz; Carlos Henrique de Brito Cruz; Annie F.A. Chimphango; L.A.B. Cortez; André Faaij; Nathanael Greene; Martin Keller; Patricia Osseweijer; Tom L. Richard; John Sheehan; Archana Chugh; Luuk A.M. van der Wielen; Jeremy Woods; Willem H. van Zyl

The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the worlds continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments. — Develop established and advanced bioenergy technologies such that each contributes to the others success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors. — Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences. — Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world. The future trajectory of the GSB project is also briefly considered.


Gcb Bioenergy | 2013

An energy‐biochar chain involving biomass gasification and rice cultivation in Northern Italy

Emanuele Lugato; Francesco Primo Vaccari; Lorenzo Genesio; Silvia Baronti; Alessandro Pozzi; Mireille Rack; Jeremy Woods; Gianluca Simonetti; Luca Montanarella; Franco Miglietta

The competing demand for food and bioenergy requires new solutions for the agricultural sector as, for instance, the coupling of energy production from gasification technology and the application of the resulting biochar as soil amendment. A prerequisite for the implementation of this strategy is the scale‐specific assessment of both the energetic performance and of the impacts in terms of greenhouse gases (GHG) emission and crop responses. This study considered the gasification process developed by Advanced Gasification Technology (AGT, Italy), which is a fixed‐bed, down‐draft, open core, compact gasifier, having 350 kW of nominal electric capacity (microgeneration); this gasifier uses biomass feedstock deriving from agricultural/forest products and byproducts. In this study, the resulting biochar, derived from conifer wood chips of mountain forestry management in North‐western Italy, was applied to a nearby paddy rice field, located in the largest rice agricultural area of Europe. We performed a Life Cycle Analysis (LCA) adapting the BEAT2 model specifically focusing on the GHG balance of the supply chain, from the forestry management to the field distribution of the resulting biochar. The results indicated that the gasification stage had the highest impact in the supply chain in terms of emissions, but net emissions allocated to biochar were always negative (ranging between −0.54 and −2.1 t CO2e t−1 biochar), hypothesizing two scenarios of 32% and 7.3% biochar mineralization rate in soil, over a time period of 100 years. Finally, biochar had a marginal but positive effect on rice yield, thus increasing the sustainability of this energy‐biochar chain.


Biotechnology for Biofuels | 2015

Bioenergy and African transformation

Lee R. Lynd; Mariam Sow; Annie F.A. Chimphango; Luís Augusto Barbosa Cortez; Carlos Henrique de Brito Cruz; Mosad Elmissiry; Mark Laser; Ibrahim A. Mayaki; Márcia Azanha Ferraz Dias de Moraes; Luiz Augusto Horta Nogueira; Gideon M. Wolfaardt; Jeremy Woods; Willem H. van Zyl

Among the world’s continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.


Energy and Environmental Science | 2015

The potential of CAM crops as a globally significant bioenergy resource: moving from ‘fuel or food’ to ‘fuel and more food’

P. Michael Mason; Katherine Glover; J. Andrew C. Smith; Katherine J. Willis; Jeremy Woods; Ian P. Thompson

Bioenergy is widely seen as being in competition with food for land resources. This note examines the potential of plants that use the mode of photosynthesis known as crassulacean acid metabolism (CAM) to generate globally significant quantities of renewable electricity without displacing productive agriculture and perhaps even increasing food supply. CAM plants require of the order of 10-fold less water per unit of dry biomass produced than do common C3 and C4 crops, and because of their succulence are endowed with substantial water-storage capacities that helps to buffer intermittent water availability. This allows them to thrive in areas where traditional agriculture struggles, either because of low rainfall, or because the seasonality or unpredictability of rainfall is too great to allow profitable arable farming. Although as a group these plants are understudied, sufficient data are available to support estimates of the contribution they might make to global electricity supply if used as feedstock for anaerobic digestion. Two CAM species are examined here as potential bioenergy crops: Opuntia ficus-indica and Euphorbia tirucalli. Both show the high degree of drought tolerance typical of CAM plants and produce promising yields with low rainfall. Even CAM plants in semi-arid areas may have opportunity costs in terms of lost agricultural potential, but an alternative approach to bioenergy may allow the food value of land to be increased whilst using the land for energy. Global power generation from gas is around 5 PW h per year. The data suggests that 5 PW h of electricity per year could be generated from CAM plants cultivated on between 100 and 380 million hectares of semi-arid land, equivalent to between 4% and 15% of the potential resource.

Collaboration


Dive into the Jeremy Woods's collaboration.

Top Co-Authors

Avatar

Francis X. Johnson

Stockholm Environment Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith L. Kline

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Virginia H. Dale

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicole Kalas

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Patricia Osseweijer

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Göran Berndes

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge