Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen de Ridder is active.

Publication


Featured researches published by Jeroen de Ridder.


Cell | 2008

Large-Scale Mutagenesis in p19ARF- and p53-Deficient Mice Identifies Cancer Genes and Their Collaborative Networks

Anthony G. Uren; Jaap Kool; Konstantin Matentzoglu; Jeroen de Ridder; Jenny Mattison; Miranda van Uitert; Wendy Lagcher; Daoud Sie; Ellen Tanger; Tony Cox; Marcel J. T. Reinders; Tim Hubbard; Jane Rogers; Jos Jonkers; Lodewyk F. A. Wessels; David J. Adams; Maarten van Lohuizen; Anton Berns

Summary p53 and p19ARF are tumor suppressors frequently mutated in human tumors. In a high-throughput screen in mice for mutations collaborating with either p53 or p19ARF deficiency, we identified 10,806 retroviral insertion sites, implicating over 300 loci in tumorigenesis. This dataset reveals 20 genes that are specifically mutated in either p19ARF-deficient, p53-deficient or wild-type mice (including Flt3, mmu-mir-106a-363, Smg6, and Ccnd3), as well as networks of significant collaborative and mutually exclusive interactions between cancer genes. Furthermore, we found candidate tumor suppressor genes, as well as distinct clusters of insertions within genes like Flt3 and Notch1 that induce mutants with different spectra of genetic interactions. Cross species comparative analysis with aCGH data of human cancer cell lines revealed known and candidate oncogenes (Mmp13, Slamf6, and Rreb1) and tumor suppressors (Wwox and Arfrp2). This dataset should prove to be a rich resource for the study of genetic interactions that underlie tumorigenesis.


Cell | 2013

Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel

Waseem Akhtar; Johann de Jong; Alexey V. Pindyurin; Ludo Pagie; Wouter Meuleman; Jeroen de Ridder; Anton Berns; Lodewyk F. A. Wessels; Maarten van Lohuizen; Bas van Steensel

Reporter genes integrated into the genome are a powerful tool to reveal effects of regulatory elements and local chromatin context on gene expression. However, so far such reporter assays have been of low throughput. Here, we describe a multiplexing approach for the parallel monitoring of transcriptional activity of thousands of randomly integrated reporters. More than 27,000 distinct reporter integrations in mouse embryonic stem cells, obtained with two different promoters, show ∼1,000-fold variation in expression levels. Data analysis indicates that lamina-associated domains act as attenuators of transcription, likely by reducing access of transcription factors to binding sites. Furthermore, chromatin compaction is predictive of reporter activity. We also found evidence for crosstalk between neighboring genes and estimate that enhancers can influence gene expression on average over ∼20 kb. The multiplexed reporter assay is highly flexible in design and can be modified to query a wide range of aspects of gene regulation.


Nature Genetics | 2011

Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis

H Nikki March; Alistair G. Rust; Nicholas A. Wright; Jelle ten Hoeve; Jeroen de Ridder; Matthew Eldridge; Louise van der Weyden; Anton Berns; Jules Gadiot; Anthony G. Uren; Richard Kemp; Mark J. Arends; Lodewyk F. A. Wessels; Douglas J. Winton; David J. Adams

The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.


PLOS Computational Biology | 2005

Detecting Statistically Significant Common Insertion Sites in Retroviral Insertional Mutagenesis Screens

Jeroen de Ridder; Anthony G. Uren; Jaap Kool; Marcel J. T. Reinders; Lodewyk F. A. Wessels

Retroviral insertional mutagenesis screens, which identify genes involved in tumor development in mice, have yielded a substantial number of retroviral integration sites, and this number is expected to grow substantially due to the introduction of high-throughput screening techniques. The data of various retroviral insertional mutagenesis screens are compiled in the publicly available Retroviral Tagged Cancer Gene Database (RTCGD). Integrally analyzing these screens for the presence of common insertion sites (CISs, i.e., regions in the genome that have been hit by viral insertions in multiple independent tumors significantly more than expected by chance) requires an approach that corrects for the increased probability of finding false CISs as the amount of available data increases. Moreover, significance estimates of CISs should be established taking into account both the noise, arising from the random nature of the insertion process, as well as the bias, stemming from preferential insertion sites present in the genome and the data retrieval methodology. We introduce a framework, the kernel convolution (KC) framework, to find CISs in a noisy and biased environment using a predefined significance level while controlling the family-wise error (FWE) (the probability of detecting false CISs). Where previous methods use one, two, or three predetermined fixed scales, our method is capable of operating at any biologically relevant scale. This creates the possibility to analyze the CISs in a scale space by varying the width of the CISs, providing new insights in the behavior of CISs across multiple scales. Our method also features the possibility of including models for background bias. Using simulated data, we evaluate the KC framework using three kernel functions, the Gaussian, triangular, and rectangular kernel function. We applied the Gaussian KC to the data from the combined set of screens in the RTCGD and found that 53% of the CISs do not reach the significance threshold in this combined setting. Still, with the FWE under control, application of our method resulted in the discovery of eight novel CISs, which each have a probability less than 5% of being false detections.


Nucleic Acids Research | 2008

Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data.

Christiaan Klijn; Henne Holstege; Jeroen de Ridder; Xiaoling Liu; Marcel J. T. Reinders; Jos Jonkers; Lodewyk F. A. Wessels

Tumor formation is in part driven by DNA copy number alterations (CNAs), which can be measured using microarray-based Comparative Genomic Hybridization (aCGH). Multiexperiment analysis of aCGH data from tumors allows discovery of recurrent CNAs that are potentially causal to cancer development. Until now, multiexperiment aCGH data analysis has been dependent on discretization of measurement data to a gain, loss or no-change state. Valuable biological information is lost when a heterogeneous system such as a solid tumor is reduced to these states. We have developed a new approach which inputs nondiscretized aCGH data to identify regions that are significantly aberrant across an entire tumor set. Our method is based on kernel regression and accounts for the strength of a probes signal, its local genomic environment and the signal distribution across multiple tumors. In an analysis of 89 human breast tumors, our method showed enrichment for known cancer genes in the detected regions and identified aberrations that are strongly associated with breast cancer subtypes and clinical parameters. Furthermore, we identified 18 recurrent aberrant regions in a new dataset of 19 p53-deficient mouse mammary tumors. These regions, combined with gene expression microarray data, point to known cancer genes and novel candidate cancer genes.


PLOS Genetics | 2014

Chromatin Landscapes of Retroviral and Transposon Integration Profiles

Johann de Jong; Waseem Akhtar; Jitendra Badhai; Alistair G. Rust; Roland Rad; John Hilkens; Anton Berns; Maarten van Lohuizen; Lodewyk F. A. Wessels; Jeroen de Ridder

The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes.


Cancer Research | 2010

Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach.

Jenny Mattison; Jaap Kool; Anthony G. Uren; Jeroen de Ridder; Lodewyk F. A. Wessels; Jos Jonkers; Graham R. Bignell; Adam Butler; Alistair G. Rust; Markus Brosch; Catherine Helen Wilson; Louise van der Weyden; David A. Largaespada; Michael R. Stratton; P. Andy Futreal; Maarten van Lohuizen; Anton Berns; Lara S. Collier; Tim Hubbard; David J. Adams

Comparative genomic hybridization (CGH) can reveal important disease genes but the large regions identified could sometimes contain hundreds of genes. Here we combine high-resolution CGH analysis of 598 human cancer cell lines with insertion sites isolated from 1,005 mouse tumors induced with the murine leukemia virus (MuLV). This cross-species oncogenomic analysis revealed candidate tumor suppressor genes and oncogenes mutated in both human and mouse tumors, making them strong candidates for novel cancer genes. A significant number of these genes contained binding sites for the stem cell transcription factors Oct4 and Nanog. Notably, mice carrying tumors with insertions in or near stem cell module genes, which are thought to participate in cell self-renewal, died significantly faster than mice without these insertions. A comparison of the profile we identified to that induced with the Sleeping Beauty (SB) transposon system revealed significant differences in the profile of recurrently mutated genes. Collectively, this work provides a rich catalogue of new candidate cancer genes for functional analysis.


Genome Biology | 2013

The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models

Jennifer Yen; Richard M. White; David C. Wedge; Peter Van Loo; Jeroen de Ridder; Amy Capper; Jennifer Richardson; David Jones; Keiran Raine; Ian R. Watson; Chang-Jiun Wu; Jiqiu Cheng; Inigo Martincorena; Serena Nik-Zainal; Laura Mudie; Yves Moreau; John Marshall; Manasa Ramakrishna; Patrick Tarpey; Adam Shlien; Ian Whitmore; Steve Gamble; Calli Latimer; Erin M. Langdon; Charles K. Kaufman; Mike Dovey; Alison M. Taylor; Andy Menzies; Stuart McLaren; Sarah O’Meara

BackgroundMelanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.ResultsTo decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.ConclusionThis is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.


Cancer Research | 2010

Insertional Mutagenesis in Mice Deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1 Reveals Cancer Gene Interactions and Correlations with Tumor Phenotypes

Jaap Kool; Anthony G. Uren; Carla P. Martins; Daoud Sie; Jeroen de Ridder; Geoffrey Turner; Miranda van Uitert; Konstantin Matentzoglu; Wendy Lagcher; Paul Krimpenfort; Jules Gadiot; Colin Pritchard; Jack Lenz; Anders H. Lund; Jos Jonkers; Jane Rogers; David J. Adams; Lodewyk F. A. Wessels; Anton Berns; Maarten van Lohuizen

The cyclin dependent kinase (CDK) inhibitors p15, p16, p21, and p27 are frequently deleted, silenced, or downregulated in many malignancies. Inactivation of CDK inhibitors predisposes mice to tumor development, showing that these genes function as tumor suppressors. Here, we describe high-throughput murine leukemia virus insertional mutagenesis screens in mice that are deficient for one or two CDK inhibitors. We retrieved 9,117 retroviral insertions from 476 lymphomas to define hundreds of loci that are mutated more frequently than expected by chance. Many of these loci are skewed toward a specific genetic context of predisposing germline and somatic mutations. We also found associations between these loci with gender, age of tumor onset, and lymphocyte lineage (B or T cell). Comparison of retroviral insertion sites with single nucleotide polymorphisms associated with chronic lymphocytic leukemia revealed a significant overlap between the datasets. Together, our findings highlight the importance of genetic context within large-scale mutation detection studies, and they show a novel use for insertional mutagenesis data in prioritizing disease-associated genes that emerge from genome-wide association studies.


Briefings in Bioinformatics | 2016

Computational pan-genomics: status, promises and challenges

Tobias Marschall; Manja Marz; Thomas Abeel; Louis J. Dijkstra; Bas E. Dutilh; Ali Ghaffaari; Paul J. Kersey; Wigard P. Kloosterman; Veli Mäkinen; Adam M. Novak; Benedict Paten; David Porubsky; Eric Rivals; Can Alkan; Jasmijn A. Baaijens; Paul I. W. de Bakker; Valentina Boeva; Raoul J. P. Bonnal; Francesca Chiaromonte; Rayan Chikhi; Francesca D. Ciccarelli; Robin Cijvat; Erwin Datema; Cornelia M. van Duijn; Evan E. Eichler; Corinna Ernst; Eleazar Eskin; Erik Garrison; Mohammed El-Kebir; Gunnar W. Klau

Abstract Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.

Collaboration


Dive into the Jeroen de Ridder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel J. T. Reinders

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alistair G. Rust

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Anthony G. Uren

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jaap Kool

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

David J. Adams

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Anton Berns

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Louise van der Weyden

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten van Lohuizen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sepideh Babaei

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge