Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen DeGroot is active.

Publication


Featured researches published by Jeroen DeGroot.


Journal of Biological Chemistry | 2000

Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products

Nicole Verzijl; Jeroen DeGroot; Suzanne R. Thorpe; Ruud A. Bank; J. Nikki Shaw; Timothy J. Lyons; Johannes W. J. Bijlsma; Floris Lafeber; John W. Baynes; Johan M. TeKoppele

Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N ε-(carboxymethyl)lysine,N ε-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p< 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus% d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.


Arthritis & Rheumatism | 2002

Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis

Nicole Verzijl; Jeroen DeGroot; Chaya Ben Zaken; Orit Braun-Benjamin; Alice Maroudas; Ruud A. Bank; Joe Mizrahi; Casper G. Schalkwijk; Suzanne R. Thorpe; John W. Baynes; Johannes W. J. Bijlsma; Floris P. J. G. Lafeber; J.M. TeKoppele

OBJECTIVE Age is an important risk factor for osteoarthritis (OA). During aging, nonenzymatic glycation results in the accumulation of advanced glycation end products (AGEs) in cartilage collagen. We studied the effect of AGE crosslinking on the stiffness of the collagen network in human articular cartilage. METHODS To increase AGE levels, human adult articular cartilage was incubated with threose. The stiffness of the collagen network was measured as the instantaneous deformation (ID) of the cartilage and as the change in tensile stress in the collagen network as a function of hydration (osmotic stress technique). AGE levels in the collagen network were determined as: Nepsilon-(carboxy[m]ethyl)lysine, pentosidine, amino acid modification (loss of arginine and [hydroxy-]lysine), AGE fluorescence (360/460 nm), and digestibility by bacterial collagenase. RESULTS Incubation of cartilage with threose resulted in a dose-dependent increase in AGEs and a concomitant decrease in ID (r = -0.81, P < 0.001; up to a 40% decrease at 200 mM threose), i.e., increased stiffness, which was confirmed by results from the osmotic stress technique. The decreased ID strongly correlated with AGE levels (e.g., AGE fluorescence r = -0.81, P < 0.0001). Coincubation with arginine or lysine (glycation inhibitors) attenuated the threose-induced decrease in ID (P < 0.05). CONCLUSION Increasing cartilage AGE crosslinking by in vitro incubation with threose resulted in increased stiffness of the collagen network. Increased stiffness by AGE crosslinking may contribute to the age-related failure of the collagen network in human articular cartilage to resist damage. Thus, the age-related accumulation of AGE crosslinks presents a putative molecular mechanism whereby age is a predisposing factor for the development of OA.


Journal of Biological Chemistry | 2003

Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis

Annemarie J. van der Slot; A.-M. Zuurmond; Alfons Bardoel; Cisca Wijmenga; Hans E. H. Pruijs; David Sillence; Jürgen Brinckmann; David J. Abraham; Carol M. Black; Nicole Verzijl; Jeroen DeGroot; Roeland Hanemaaijer; J.M. TeKoppele; Tom W J Huizinga; Ruud A. Bank

The hallmark of fibrotic processes is an excessive accumulation of collagen. The deposited collagen shows an increase in pyridinoline cross-links, which are derived from hydroxylated lysine residues within the telopeptides. This change in cross-linking is related to irreversible accumulation of collagen in fibrotic tissues. The increase in pyridinoline cross-links is likely to be the result of increased activity of the enzyme responsible for the hydroxylation of the telopeptides (telopeptide lysyl hydroxylase, or TLH). Although the existence of TLH has been postulated, the gene encoding TLH has not been identified. By analyzing the genetic defect of Bruck syndrome, which is characterized by a pyridinoline deficiency in bone collagen, we found two missense mutations in exon 17 of PLOD2, thereby identifying PLOD2 as a putative TLH gene. Subsequently, we investigated fibroblasts derived from fibrotic skin of systemic sclerosis (SSc) patients and found that PLOD2 mRNA is highly increased indeed. Furthermore, increased pyridinoline cross-link levels were found in the matrix deposited by SSc fibroblasts, demonstrating a clear link between mRNA levels of the putative TLH gene (PLOD2) and the hydroxylation of lysine residues within the telopeptides. These data underscore the significance of PLOD2 in fibrotic processes.


Biochemical Journal | 2000

Age-related accumulation of Maillard reaction products in human articular cartilage collagen.

Nicole Verzijl; Jeroen DeGroot; Esther Oldehinkel; Ruud A. Bank; Suzanne R. Thorpe; John W. Baynes; Michael T. Bayliss; Johannes W. J. Bijlsma; Floris P. J. G. Lafeber; J.M. TeKoppele

Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated with a stiffer collagen network in cartilage. However, even in cartilage, pentosidine levels themselves represent <1 cross-link per 20 collagen molecules, and as such cannot be expected to contribute substantially to the increase in collagen network stiffness. In the present study, we investigated a broad range of Maillard reaction products in cartilage collagen in order to determine whether pentosidine serves as an adequate marker for AGE levels. Not only did the well-characterized AGEs pentosidine, N(epsilon)-(carboxymethyl)lysine, and N(epsilon)-(carboxyethyl)lysine increase with age in cartilage collagen (all P<0.0001), but also general measures of AGE cross-linking, such as browning and fluorescence (both P<0.0001), increased. The levels of these AGEs are all higher in cartilage collagen than in skin collagen. As a functional measure of glycation the digestibility of articular collagen by bacterial collagenase was investigated; digestibility decreased linearly with age, proportional to the extent of glycation. Furthermore, the arginine content and the sum of the hydroxylysine and lysine content of cartilage collagen decrease significantly with age (P<0.0001 and P<0. 01 respectively), possibly due to modification by the Maillard reaction. The observed relationship between glycation and amino acid modification has not been reported previously in vivo. Our present results indicate that extensive accumulation of a variety of Maillard reaction products occurs in cartilage collagen with age. Altogether our results support the hypothesis that glycation contributes to stiffer and more brittle cartilage with advancing age.


Annals of the Rheumatic Diseases | 2010

Association between weight or body mass index and hand osteoarthritis: a systematic review

E. Yusuf; Rob G. H. H. Nelissen; Andreea Ioan-Facsinay; V. Stojanovic-Susulic; Jeroen DeGroot; Gerjo J.V.M. van Osch; Saskia Middeldorp; Tom W J Huizinga; Margreet Kloppenburg

Objective To investigate the association between weight or body mass index (BMI) and the development of hand osteoarthritis. Methods Systematic review of observational studies. Medical databases were searched up to April 2008. Articles that presented data on the association between weight and hand osteoarthritis were selected. The qualities of these studies were then assessed by two independent reviewers using a 19 criteria scoring system. Using the mean scores of all studies as a cut-off value, the studies were deemed as high or low quality. Study quality and study designs were combined to determine the level of evidence using best-evidence synthesis, which consisted of five levels of evidence. Results From the 25 studies included, two had cohort, three case–control and 20 cross-sectional study designs. Fifteen studies were considered high-quality studies. Of these high-quality studies, one cohort, two case–control and seven cross-sectional studies showed a positive association between weight or BMI and hand osteoarthritis. Based on three high-quality studies with preferred study designs (one cohort and two case–control) with a positive association, the level of evidence of the association between overweight and developing hand osteoarthritis is moderate. The approximate risk ratio of this association is 1.9. Conclusion Weight or BMI is associated with the development of hand osteoarthritis. The level of evidence of published studies is moderate according to best-evidence synthesis. Further high-quality cohort or case–control studies are needed to elucidate the role of weight in hand osteoarthritis.


Journal of Proteome Research | 2010

Comprehensive LC−MSE Lipidomic Analysis using a Shotgun Approach and Its Application to Biomarker Detection and Identification in Osteoarthritis Patients

Jose Castro-Perez; Jurre J. Kamphorst; Jeroen DeGroot; Floris P. J. G. Lafeber; Jeff Goshawk; Kate Yu; John P. Shockcor; Rob J. Vreeken; Thomas Hankemeier

A fast and robust method for lipid profiling utilizing liquid chromatography coupled with mass spectrometry has been demonstrated and validated for the analysis of human plasma. This method allowed quantification and identification of lipids in human plasma using parallel alternating low energy and high energy collision spectral acquisition modes. A total of 275 [corrected] lipids were identified and quantified (as relative concentrations) in both positive and negative ion electrospray ionization mode. The method was validated with five nonendogenous lipids, and the linearity (r(2) better than 0.994) and the intraday and interday repeatability (relative standard deviation, 4-6% and 5-8%, respectively) were satisfactory. The developed lipid profiling method was successfully applied for the analysis of plasma from osteoarthritis (OA) patients. The multivariate statistical analysis by partial least-squares-discrimination analysis suggested an altered lipid metabolism associated with osteoarthritis and the release of arachidonic acid from phospholipids.


Arthritis & Rheumatism | 1999

Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation

Jeroen DeGroot; Nicole Verzijl; Ruud A. Bank; Floris P. J. G. Lafeber; Johannes W. J. Bijlsma; J.M. TeKoppele

OBJECTIVE To examine the effect of nonenzymatic glycation of cartilage extracellular matrix on the synthetic activity of chondrocytes. METHODS The proteoglycan-synthesis rate (35SO4(2-) incorporation) and levels of advanced nonenzymatic glycation (determined by high-performance liquid chromatography measurement of pentosidine) were evaluated in human articular cartilage from 129 donors, varying in age from 25 to 88 years, and in cartilage with enhanced levels of advanced glycation end-products (AGEs) resulting from incubation with ribose. RESULTS Cartilage showed a strong age-related increase in pentosidine levels (r = 0.97, P < 0.0005) and, concomitantly, a decrease in proteoglycan synthesis (r = -0.98, P < 0.0002). This decrease in proteoglycan synthesis correlated with the increase in pentosidine (r = -0.95, P < 0.02). Moreover, the elevation of pentosidine levels in the in vitro-ribosylated cartilage was proportional with the decrease in proteoglycan synthesis (r = -0.95, P < 0.005). CONCLUSION In both aged and in vitro AGE-enriched cartilage, the rate of proteoglycan synthesis was negatively correlated with the degree of glycation. This suggests that the age-related increase in cartilage AGE levels may be responsible, at least in part, for the age-related decline in the synthetic capacity of cartilage.


American Journal of Sports Medicine | 2007

Achilles Tendinosis: Changes in Biochemical Composition and Collagen Turnover Rate

Marieke de Mos; Benno van El; Jeroen DeGroot; Holger Jahr; Hans T. M. van Schie; Ewoud R.A. van Arkel; Hans Tol; Rien Heijboer; Gerjo J.V.M. van Osch; J.A.N. Verhaar

Background Understanding biochemical and structural changes of the extracellular matrix in Achilles tendinosis might be important for developing mechanism-based therapies. Hypothesis In Achilles tendinosis, changes occur in biochemical composition and collagen turnover rate. Study Design Descriptive laboratory study. Methods From 10 patients undergoing surgery for Achilles tendinopathy, 1 tendinosis biopsy specimen and 1 biopsy specimen of macroscopically healthy tendon tissue adjacent to the lesion were collected. Furthermore, biopsy samples were collected from 3 donors with asymptomatic Achilles tendons. Water content, collagen content, percentage of denatured collagen, amount of lysine hydroxylation, number of enzymatic and nonenzymatic crosslinks, matrix metalloproteinase activity, and matrix metalloproteinase and collagen gene-expression levels were analyzed. Results In tendinotic lesions, the water content was highest, and collagen content was subnormal with higher amounts of denatured/damaged collagen. Low pentosidine levels in tendinotic tissue indicated the presence of relatively young collagenous matrix. More hydroxylated lysine residues were present in tendinotic samples, but enzymatic crosslinks revealed no differences between tendinotic, adjacent, and healthy samples. In tendinotic specimens, matrix metalloproteinase activity was higher, matrix metalloproteinase gene-expression profile was altered, and collagen type I and III gene expression were upregulated. Conclusion In Achilles tendinosis, the collagen turnover rate is increased, and the natural biochemical composition of the collagenous matrix is compromised. Clinical Relevance Although tendon tissue directly adjacent to an Achilles tendinosis lesion looks macroscopically healthy, histological and biochemical degenerative changes in adjacent tissue are evident, which may have implications for surgical interventions.


Current Opinion in Rheumatology | 2003

AGEing and osteoarthritis: a different perspective

Nicole Verzijl; Ruud A. Bank; J.M. TeKoppele; Jeroen DeGroot

Purpose of reviewAcross the world, osteoarthritis is the most commonly occurring musculoskeletal disease of the elderly, affecting more than 25% of the population older than 60 years of age. By far the single greatest risk factor for the development of osteoarthritis is age, but a mechanism to explain this relation has not yet been identified. If such a mechanism is identified, this potentially also provides a novel target for osteoarthritis therapy. The identification of new therapeutic targets is of utmost importance, because a disease-modifying treatment for osteoarthritis is not available and, because of the graying of the population, the number of patients with osteoarthritis will continue to increase, which will pose an enormous social and economic burden on society. Recent findingsAdvanced glycation end products accumulate in human articular cartilage with increasing age, and affect biomechanical, biochemical, and cellular characteristics of the tissue. As an illustration, accumulation of advanced glycation end products increase cartilage stiffness and brittleness while decreasing the synthesis and degradation of cartilage matrix constituents. Articular cartilage becomes more prone to damage, and thus osteoarthritis, at elevated concentrations of advanced glycation end products. SummaryThe reviewed literature demonstrates that the age-related accumulation of advanced glycation end products in articular cartilage may provide a molecular mechanism capable of (at least in part) explaining the age-related increase in the incidence of osteoarthritis. This conclusion paves the way for new strategies to prevent or treat osteoarthritis via inhibition and/or reversal of this process.


Annals of the Rheumatic Diseases | 2003

Matrix metalloproteinases-3, -8, -9 as markers of disease activity and joint damage progression in early rheumatoid arthritis

I Tchetverikov; Leroy R Lard; Jeroen DeGroot; N Verzijl; J.M. TeKoppele; F. C. Breedveld; T. W. J. Huizinga; R Hanemaaijer

Objective: To analyse the relation between systemic levels of pro-MMP-3, -8, and -9 matrix metalloproteinase (MMP) activity in α2 macroglobulin (α2M)/MMP complexes and the progression of joint destruction in patients with recent onset rheumatoid arthritis (RA). Methods: 109 patients with RA of recent onset were entered into this longitudinal study. Patients were followed up for two years; clinical data, blood samples, and radiographs were obtained at baseline and at 1 and 2 years. Serum levels of MMPs were measured by sandwich ELISA and MMP activity assays. Results: During the two years joint damage progressed from 0 to 10 (median Sharp score, p<0.001). Stable levels of pro-MMP-3 and a significant decrease in the levels of pro-MMP-8 and -9 and α2M/MMP complexes were seen throughout the two years. Regression analysis showed that serum pro-MMP-3 levels at disease onset were independently associated with the progression of joint damage (B=0.7, 95% CI 0.3 to 1.1, p=0.001). Based on the rate of joint destruction, patients were divided into two subgroups: patients with mild and severe joint damage progression. The pro-MMP-3 levels were significantly higher in the group with severe compared with mild disease at all times. Levels of pro-MMP-8 and -9 were decreased in both groups, whereas α2M/MMP complex levels decreased in the group with mild disease only. Conclusion: Serum levels of the MMPs studied are associated with disease activity, but serum pro-MMP-3 levels at the onset of disease are also predictive of joint damage progression.

Collaboration


Dive into the Jeroen DeGroot's collaboration.

Top Co-Authors

Avatar

Ruud A. Bank

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.A.N. Verhaar

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom W J Huizinga

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.J. van Osch

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Harrie Weinans

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge