Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen Hendrikse is active.

Publication


Featured researches published by Jeroen Hendrikse.


Magnetic Resonance in Medicine | 2015

Recommended implementation of arterial spin-labeled Perfusion mri for clinical applications: A consensus of the ISMRM Perfusion Study group and the European consortium for ASL in dementia

David C. Alsop; John A. Detre; Xavier Golay; Matthias Günther; Jeroen Hendrikse; Luis Hernandez-Garcia; Hanzhang Lu; Bradley J. MacIntosh; Laura M. Parkes; Marion Smits; Matthias J.P. van Osch; Danny J.J. Wang; Eric C. Wong; Greg Zaharchuk

This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade‐offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo‐continuous labeling, background suppression, a segmented three‐dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model. Magn Reson Med 73:102–116, 2015.


Topics in Magnetic Resonance Imaging | 2004

Perfusion Imaging Using Arterial Spin Labeling

Xavier Golay; Jeroen Hendrikse; Tchoyoson Choie-Cheio Lim

Abstract: Arterial spin labeling is a magnetic resonance method for the measurement of cerebral blood flow. In its simplest form, the perfusion contrast in the images gathered by this technique comes from the subtraction of two successively acquired images: one with, and one without, proximal labeling of arterial water spins after a small delay time. Over the last decade, the method has moved from the experimental laboratory to the clinical environment. Furthermore, numerous improvements, ranging from new pulse sequence implementations to extensive theoretical studies, have broadened its reach and extended its potential applications. In this review, the multiple facets of this powerful yet difficult technique are discussed. Different implementations are compared, the theoretical background is summarized, and potential applications of various implementations in research as well as in the daily clinical routine are proposed. Finally, a summary of the new developments and emerging techniques in this field is provided.


Stroke | 2004

Flow territory mapping of the cerebral arteries with regional perfusion MRI.

Jeroen Hendrikse; Jeroen van der Grond; Hanzhang Lu; Peter C.M. van Zijl; Xavier Golay

Background and Purpose— Conventional contrast-enhanced angiography is the gold standard for visualization of the vascular tree supplied by the major cerebral arteries and assessment of collateral flow. Thus far, however, no methods are available to assess the actual flow territories of the individual cerebral arteries. In the present study, we evaluate a noninvasive arterial spin labeling MRI method for selective mapping of the flow territories of the left and right internal carotid arteries and posterior circulation (basilar artery and vertebral arteries). Methods— A spatially selective labeling approach, regional perfusion imaging, was developed on the basis of selective slab inversion of the arterial water with a pulsed arterial spin labeling sequence. The selectivity of this method was demonstrated. Results— Regional perfusion imaging enables assessment of the perfusion territories of the major cerebral arteries. With selective labeling of an internal carotid artery, signal is present in both the ipsilateral anterior cerebral artery and ipsilateral middle cerebral artery flow territory. With labeling of the basilar artery, perfusion-weighted signal is symmetrically present in both posterior cerebral artery flow territories. Cerebral blood flow values measured with regional perfusion imaging in the complete hemisphere (40.1 mL · min−1 · 100 g−1 tissue), white matter (22.1 mL · min−1 · 100 g−1 tissue), and gray matter (65.8 mL · min−1 · 100 g−1 tissue) are in agreement with data in the literature. Conclusions— We present the first imaging method capable of evaluating both quantitatively and qualitatively the flow territories of the individual brain-feeding arteries in vivo.


Magnetic Resonance in Medicine | 2009

Can Arterial Spin Labeling Detect White Matter Perfusion Signal

Matthias J.P. van Osch; Wouter M. Teeuwisse; Marianne A. A. van Walderveen; Jeroen Hendrikse; Dennis A. Kies; Mark A. van Buchem

Since the invention of arterial spin labeling (ASL) it has been acknowledged that ASL does not allow reliable detection of a white matter (WM) perfusion signal. However, recent developments such as pseudo‐continuous labeling and background suppression have improved the quality. The goal of this research was to study the ability of these newer ASL sequences to detect WM perfusion signal. Background suppressed pseudo‐continuous ASL was implemented at 3T with multislice 2D readout after 1525 ms. In five volunteers it was shown that 10 min scanning resulted in significant perfusion signal in 70% of WM voxels. Increasing the labeling and delay time did not lead to a higher percentage. In 27 normal volunteers it was found that 35 averages are necessary to detect significant WM signal, but 150 averages are needed to detect signal in the deep WM. Finally, it was shown in a patient with a cerebral arteriovenous malformation that pseudo‐continuous ASL enabled the depiction of hypointense WM perfusion signal, although dynamic susceptibility contrast MRI showed that this region was merely showing delayed arrival of contrast agent than hypoperfusion. It can be concluded that, except within the deep WM, ASL is sensitive enough to detect WM perfusion signal and perfusion deficits. Magn Reson Med, 2009.


European Journal of Radiology | 2013

Clinical applications of 7 T MRI in the brain

Anja G. van der Kolk; Jeroen Hendrikse; Jaco J.M. Zwanenburg; Fredy Visser; Peter R. Luijten

This review illustrates current applications and possible future directions of 7 Tesla (7 T) Magnetic Resonance Imaging (MRI) in the field of brain MRI, in clinical studies as well as clinical practice. With its higher signal-to-noise (SNR) and contrast-to-noise ratio (CNR) compared to lower field strengths, high resolution, contrast-rich images can be obtained of diverse pathologies, like multiple sclerosis (MS), brain tumours, aging-related changes and cerebrovascular diseases. In some of these diseases, additional pathophysiological information can be gained compared to lower field strengths. Because of clear depiction of small anatomical details, and higher lesion conspicuousness, earlier diagnosis and start of treatment of brain diseases may become possible. Furthermore, additional insight into the pathogenesis of brain diseases obtained with 7 T MRI could be the basis for new treatment developments. However, imaging at high field comes with several limitations, like inhomogeneous transmit fields, a higher specific absorption rate (SAR) and, currently, extensive contraindications for patient scanning. Future studies will be aimed at assessing the advantages and disadvantages of 7 T MRI over lower field strengths in light of clinical applications, specifically the additional diagnostic and prognostic value of 7 T MRI.


Journal of Cerebral Blood Flow and Metabolism | 2013

In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI

Susanne J. van Veluw; Jaco J.M. Zwanenburg; JooYeon Engelen-Lee; Wim G. M. Spliet; Jeroen Hendrikse; Peter R. Luijten; Geert Jan Biessels

Cerebrovascular disease has an important role in cognitive decline and dementia. In this context, cerebral microinfarcts are attracting increasing attention, but these lesions could thus far not be detected in vivo. The aim of this study was to try to identify possible cortical microinfarcts on high-resolution 7T in vivo magnetic resonance imaging (MRI) and to perform a histopathologic validation study on similar appearing lesions on 7T ex vivo MRI of postmortem brain tissue. The study population consisted of 22 elderly subjects, who underwent 7T MRI. The fluid attenuated inversion recovery, T2, and T1 weighted scans of these subjects were examined for possible cortical microinfarcts. In the ex vivo MRI study, 15 formalin-fixed coronal brain slices of 6 subjects with Alzheimer and vascular pathology were examined and subjected to histopathologic verification. On the in vivo scans, 15 cortical lesions could be identified that were likely to be microinfarcts in 6 subjects. In the postmortem tissue, 6 similar appearing lesions were identified of which 5 were verified as cortical microinfarcts on histopathology. This study provides strong evidence that cortical microinfarcts can be detected in vivo, which will be of great value in further studies into the role of vascular disease in cognitive decline and dementia.


Journal of Cerebral Blood Flow and Metabolism | 2010

Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H215O positron emission tomography in patients with symptomatic carotid artery occlusion

Reinoud P. H. Bokkers; Jochem P. Bremmer; Bart N.M. van Berckel; Adriaan A. Lammertsma; Jeroen Hendrikse; Josien P. W. Pluim; L. Jaap Kappelle; Ronald Boellaard; Catharina J.M. Klijn

Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) with image acquisition at multiple inversion times is a noninvasive ASL technique able to compensate for spatial heterogeneities in transit times caused by collateral blood flow in patients with severe stenosis of the cerebropetal blood vessels. Our aim was to compare ASL-MRI and H215O positron emission tomography (PET), the gold standard for cerebral blood flow (CBF) assessment, in patients with a symptomatic internal carotid artery (ICA) occlusion. Fourteen patients (63±14 years) with a symptomatic ICA occlusion underwent both ASL-MRI and H215O PET. The ASL-MRI was performed using a pulsed STAR labeling technique at multiple inversion times within 7 days of the PET. The CBF was measured in the gray-matter of the anterior, middle and posterior cerebral artery, and white-matter. Both PET and ASL-MRI showed a significantly decreased CBF in the gray-matter of the middle cerebral artery in the hemisphere ipsilateral to the ICA occlusion. The average gray-matter CBF measured with ASL-MRI (71.8±4.3 mL/min/100 g) was higher (P<0.01) than measured with H215O PET (43.1±1.0 mL/min/100 g). In conclusion, ASL-MRI at multiple TIs is capable of depicting areas of regions with low CBF in patients with an occlusion of the ICA, although a systematic overestimation of CBF relative to H215O PET was noted.


Radiology | 2008

Brain Perfusion Territory Imaging: Methods and Clinical Applications of Selective Arterial Spin-labeling MR Imaging

Peter Jan van Laar; Jeroen van der Grond; Jeroen Hendrikse

The ability to visualize perfusion territories in the brain is important for many clinical applications. The aim of this overview is to highlight the possibilities of selective arterial spin-labeling (ASL) magnetic resonance (MR) imaging techniques in the assessment of the perfusion territories of the cerebral arteries. In the past decade, the optimization of selective ASL MR techniques to image the cerebral perfusion territories has resulted in numerous labeling approaches and an increasing number of clinical applications. In this article, the methods and clinical applications of selective ASL MR imaging are described and the importance of perfusion territory information in studying cerebral hemodynamic changes in patients with cerebrovascular disease is shown. In specific patient groups with cerebrovascular disease, such as acute stroke, large artery steno-occlusive disease, and arteriovenous malformation, selective ASL MR imaging provides valuable hemodynamic information when added to current MR protocols. As a noninvasive tool for perfusion territory measurements, selective ASL may contribute to a better understanding of the relation between the vasculature, perfusion, and brain function.


Stroke | 2011

Intracranial Vessel Wall Imaging at 7.0-T MRI

Anja G. van der Kolk; Jaco J.M. Zwanenburg; Manon Brundel; G.J. Biessels; Fredy Visser; Peter R. Luijten; Jeroen Hendrikse

Background and Purpose— Conventional imaging methods cannot depict the vessel wall of intracranial arteries at sufficient resolutions. This hampers the evaluation of intracranial arterial disease. The aim of the present study was to develop a high-resolution MRI method to image intracranial vessel wall. Methods— We developed a volumetric (3-dimensional) turbo spin-echo (TSE) sequence for intracranial vessel wall imaging at 7.0-T MRI. Inversion recovery was used to null cerebrospinal fluid to increase contrast with the vessel wall. Magnetization preparation was applied before inversion to improve signal-to-noise ratio. Seven healthy volunteers and 35 patients with ischemic stroke or transient ischemic attack underwent imaging to test the magnetization preparation inversion recovery TSE sequence. Gadolinium-based contrast agent (Gadobutrol, 0.1 mL/kg) was administered to assess possible lesion enhancement in the patients. Results— The walls of intracranial arterial vessels could be visualized in all volunteers and patients with good contrast between wall, blood, and cerebrospinal fluid. The quality of the vessel wall depiction was independent of the vessel orientation relative to the plane of acquisition. In 21 of the 35 patients, a total number of 52 intracranial vessel wall lesions were identified. Eleven of the 52 lesions showed enhancement after contrast administration. Only 14 of the 52 lesions resulted in stenosis of the arterial lumen. Conclusions— Intracranial vessel wall and its pathology can be depicted with the magnetization preparation inversion recovery TSE sequence at 7.0 T. The magnetization preparation inversion recovery TSE sequence will make it possible to study the role of intracranial arterial wall pathology in ischemic stroke. Clinical Trial Registration Information— URL: http://www.trialregister.nl/trialreg/index.asp. Unique identifier: NTR2119.


Journal of Neurology, Neurosurgery, and Psychiatry | 2012

Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis

Esther Verstraete; J. H. Veldink; Jeroen Hendrikse; Helenius J. Schelhaas; M.P. van den Heuvel; L. H. van den Berg

Objectives Amyotrophic lateral sclerosis (ALS) is a fatal disease characterised by combined upper and lower motor neuron degeneration. An early and accurate diagnosis is important for patient care and might facilitate the search for a more effective therapy. MRI was used to study the whole cortical mantle, applying an unbiased surface based approach to identify a marker of upper motor neuron involvement in ALS. Methods Surface based cortical morphology analyses were performed on structural, 3T MRI data of 45 patients with ALS and 25 matched healthy controls in a case control study design. These analyses consisted of measuring cortical thickness, surface area and volume. The effects of disease progression were examined by correlating cortical measures with progression rate and by longitudinal measures in 20 patients. Results Cortical morphology analyses revealed specific thinning in the precentral gyrus, considered the primary motor cortex, in patients with ALS compared with controls (p=6.3×10−8). Surface area was reduced in the right inferior parietal region (p=0.049) and volume—the product of cortical thickness and surface area—was reduced in the right precentral gyrus (p=0.031). From these findings, it appears that cortical thickness is superior in detecting the degenerative effects of ALS. Relative cortical thinning in temporal regions was related to faster clinical progression (right inferior temporal gyrus: p=3.3×10−4). Conclusions Cortical thinning of the primary motor cortex might be a diagnostic marker for upper motor neuron degeneration in ALS. Relative thinning in temporal regions was associated with a rapidly progressive disease course.

Collaboration


Dive into the Jeroen Hendrikse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esben T. Petersen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen van der Grond

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manus J. Donahue

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge