Jeroen Knijnenburg
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeroen Knijnenburg.
Journal of Medical Genetics | 2005
Carla Rosenberg; Jeroen Knijnenburg; Egbert Bakker; Angela M. Vianna-Morgante; Willem Sloos; Paulo A. Otto; M. Kriek; K. Hansson; Ana Cristina Krepischi-Santos; Heike Fiegler; Nigel P. Carter; Emilia K. Bijlsma; A. Van Haeringen; Karoly Szuhai; Hans J. Tanke
Background: The underlying causes of mental retardation remain unknown in about half the cases. Recent array-CGH studies demonstrated cryptic imbalances in about 25% of patients previously thought to be chromosomally normal. Objective and methods: Array-CGH with approximately 3500 large insert clones spaced at ∼1 Mb intervals was used to investigate DNA copy number changes in 81 mentally impaired individuals. Results: Imbalances never observed in control chromosomes were detected in 20 patients (25%): seven were de novo, nine were inherited, and four could not have their origin determined. Six other alterations detected by array were disregarded because they were shown by FISH either to hybridise to both homologues similarly in a presumptive deletion (one case) or to involve clones that hybridised to multiple sites (five cases). All de novo imbalances were assumed to be causally related to the abnormal phenotypes. Among the others, a causal relation between the rearrangements and an aberrant phenotype could be inferred in six cases, including two imbalances of the X chromosome, where the associated clinical features segregated as X linked recessive traits. Conclusions: In all, 13 of 81 patients (16%) were found to have chromosomal imbalances probably related to their clinical features. The clinical significance of the seven remaining imbalances remains unclear. The limited ability to differentiate between inherited copy number variations which cause abnormal phenotypes and rare variants unrelated to clinical alterations currently constitutes a limitation in the use of CGH-microarray for guiding genetic counselling.
Blood | 2009
Remco van Doorn; Marloes S. van Kester; Remco Dijkman; Maarten H. Vermeer; Aat A. Mulder; Karoly Szuhai; Jeroen Knijnenburg; Judith M. Boer; Rein Willemze; Cornelis P. Tensen
Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is a malignancy of mature, skin-homing T cells. Sézary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study, the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based comparative genomic hybridization (CGH); simultaneously, gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. The pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene-expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that the presence of chromosomal alterations on 9p21, 8q24, and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these cutaneous T-cell lymphomas may be distinct.
Cancer Research | 2008
Maarten H. Vermeer; Remco van Doorn; Remco Dijkman; Xin Mao; Sean Whittaker; Pieter C. van Voorst Vader; Marie-Jeanne P. Gerritsen; Marie-Louise Geerts; Sylke Gellrich; Ola Söderberg; Karl-Johan Leuchowius; Ulf Landegren; Jacoba J. Out-Luiting; Jeroen Knijnenburg; Marije IJszenga; Karoly Szuhai; Rein Willemze; Cornelis P. Tensen
This study was designed to identify highly recurrent genetic alterations typical of Sézary syndrome (Sz), an aggressive cutaneous T-cell lymphoma/leukemia, possibly revealing pathogenetic mechanisms and novel therapeutic targets. High-resolution array-based comparative genomic hybridization was done on malignant T cells from 20 patients. Expression levels of selected biologically relevant genes residing within loci with frequent copy number alteration were measured using quantitative PCR. Combined binary ratio labeling-fluorescence in situ hybridization karyotyping was done on malignant cells from five patients. Minimal common regions with copy number alteration occurring in at least 35% of patients harbored 15 bona fide oncogenes and 3 tumor suppressor genes. Based on the function of the identified oncogenes and tumor suppressor genes, at least three molecular mechanisms are relevant in the pathogenesis of Sz. First, gain of cMYC and loss of cMYC antagonists (MXI1 and MNT) were observed in 75% and 40% to 55% of patients, respectively, which were frequently associated with deregulated gene expression. The presence of cMYC/MAX protein heterodimers in Sézary cells was confirmed using a proximity ligation assay. Second, a region containing TP53 and genome maintenance genes (RPA1/HIC1) was lost in the majority of patients. Third, the interleukin 2 (IL-2) pathway was affected by gain of STAT3/STAT5 and IL-2 (receptor) genes in 75% and 30%, respectively, and loss of TCF8 and DUSP5 in at least 45% of patients. In sum, the Sz genome is characterized by gross chromosomal instability with highly recurrent gains and losses. Prominent among deregulated genes are those encoding cMYC, cMYC-regulating proteins, mediators of MYC-induced apoptosis, and IL-2 signaling pathway components.
Cytogenetic and Genome Research | 2006
Ana Cristina Krepischi-Santos; Angela M. Vianna-Morgante; Fernanda Sarquis Jehee; Maria Rita Passos-Bueno; Jeroen Knijnenburg; Karoly Szuhai; Willem Sloos; Juliana F. Mazzeu; Fernando Kok; Carola Cheroki; Paulo A. Otto; Regina C. Mingroni-Netto; Célia P. Koiffmann; Chong Ae Kim; Débora Romeo Bertola; Peter L. Pearson; Carla Rosenberg
We report array-CGH screening of 95 syndromic patients with normal G-banded karyotypes and at least one of the following features: mental retardation, heart defects, deafness, obesity, craniofacial dysmorphisms or urogenital tract malformations. Chromosome imbalances not previously detected in normal controls were found in 30 patients (31%) and at least 16 of them (17%) seem to be causally related to the abnormal phenotypes. Eight of the causative imbalances had not been described previously and pointed to new chromosome regions and candidate genes for specific phenotypes, including a connective tissue disease locus on 2p16.3, another for obesity on 7q22.1→q22.3, and a candidate gene for the 3q29 deletion syndrome manifestations. The other causative alterations had already been associated with well-defined phenotypes including Sotos syndrome, and the 1p36 and 22q11.21 microdeletion syndromes. However, the clinical features of these latter patients were either not typical or specific enough to allow diagnosis before detection of chromosome imbalances. For instance, three patients with overlapping deletions in 22q11.21 were ascertained through entirely different clinical features, i.e., heart defect, utero-vaginal aplasia, and mental retardation associated with psychotic disease. Our results demonstrate that ascertainment through whole-genome screening of syndromic patients by array-CGH leads not only to the description of new syndromes, but also to the recognition of a broader spectrum of features for already described syndromes. Furthermore, on the technical side, we have significantly reduced the amount of reagents used and costs involved in the array-CGH protocol, without evident reduction in efficiency, bringing the method more within reach of centers with limited budgets.
Journal of Clinical Oncology | 2006
Remco Dijkman; Cornelis P. Tensen; Ekaterina S. Jordanova; Jeroen Knijnenburg; Juliette J. Hoefnagel; Aat A. Mulder; Carla Rosenberg; Anton K. Raap; Rein Willemze; Karoly Szuhai; Maarten H. Vermeer
PURPOSE To evaluate the clinical relevance of genomic aberrations in primary cutaneous large B-cell lymphoma (PCLBCL). PATIENTS AND METHODS Skin biopsy samples of 31 patients with a PCLBCL classified as either primary cutaneous follicle center lymphoma (PCFCL; n = 19) or PCLBCL, leg type (n = 12), according to the WHO-European Organisation for Research and Treatment of Cancer (EORTC) classification, were investigated using array-based comparative genomic hybridization, fluorescence in situ hybridization (FISH), and examination of promoter hypermethylation. RESULTS The most recurrent alterations in PCFCL were high-level DNA amplifications at 2p16.1 (63%) and deletion of chromosome 14q32.33 (68%). FISH analysis confirmed c-REL amplification in patients with gains at 2p16.1. In PCLBCL, leg type, most prominent aberrations were a high-level DNA amplification of 18q21.31-q21.33 (67%), including the BCL-2 and MALT1 genes as confirmed by FISH, and deletions of a small region within 9p21.3 containing the CDKN2A, CDKN2B, and NSG-x genes. Homozygous deletion of 9p21.3 was detected in five of 12 patients with PCLBCL, leg type, but in zero of 19 patients with PCFCL. Complete methylation of the promoter region of the CDKN2A gene was demonstrated in one PCLBCL, leg type, patient with hemizygous deletion, in one patient without deletion, but in zero of 19 patients with PCFCL. Seven of seven PCLBCL, leg type, patients with deletion of 9p21.3 and/or complete methylation of CDKN2A died as a result of their lymphoma. CONCLUSION Our results demonstrate prominent differences in chromosomal alterations between PCFCL and PCLBCL, leg type, that support their classification as separate entities within the WHO-EORTC scheme. Inactivation of CDKN2A by either deletion or methylation of its promoter could be an important prognostic parameter for the group of PCLBCL, leg type.
BMC Genomics | 2007
Judith N. Kloth; Jan Oosting; Tom van Wezel; Karoly Szuhai; Jeroen Knijnenburg; Arko Gorter; Gemma G. Kenter; Gert Jan Fleuren; Ekaterina S. Jordanova
BackgroundCervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression.ResultsGenome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR).ConclusionThis study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer.
American Journal of Medical Genetics Part A | 2005
Jeroen Knijnenburg; Karoly Szuhai; Jacques Giltay; Lia Molenaar; Willem Sloos; Martin Poot; Hans J. Tanke; Carla Rosenberg
Array‐based comparative genomic hybridization allows high‐resolution screening of copy number abnormalities in the genome, and becomes an increasingly important tool to detect deletions and duplications in tumor and post‐natal cytogenetics. Here we illustrate that genomic arrays can also provide novel clues regarding the structural basis of chromosome rearrangement, including instability and mechanisms of formation of ring chromosomes. We also showed that array results might impact the recurrence risks for relatives of affected individuals. Our data indicate that chromosome rearrangements frequently involve more breaks than current cytogenetic models assume.
European Journal of Human Genetics | 2007
Jeroen Knijnenburg; Arie van Haeringen; Kerstin Hansson; Arjan C. Lankester; Margot J M Smit; René D M Belfroid; Egbert Bakker; Carla Rosenberg; Hans J. Tanke; Karoly Szuhai
Ring chromosomes are rare cytogenetic findings and are associated at phenotypic level with mental retardation and congenital abnormalities. Features specific for ring chromosome syndromes often overlap with the features of terminal deletions for the corresponding chromosomes. Here, we report a case of a ring chromosome 14 which was identified by conventional cytogenetics and shown to have a terminal deletion and an additional inverted duplication with a triplication by using large insert clone and oligo array-comparative genomic hybridization (array-CGH), fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA). The combination of an inverted duplication with a terminal deletion in a ring chromosome is of special interest for the described syndromes of chromosome 14. The presented findings might explain partly overlapping clinical features described in terminal deletion, duplication and ring chromosome 14 cases, as these rearrangements can be easily overlooked when performing GTG-banding only. Furthermore, we suggest that ring chromosome formation can act as an alternative chromosome rescue next to telomere healing and capture, particularly for acrocentric chromosomes. To our knowledge, this is the first time an inverted duplication with a terminal deletion in a ring chromosome is identified and characterized using high-resolution molecular karyotyping. Systematic evaluation of ring chromosomes by array-CGH might be especially useful in distinguishing cases with a duplication/deletion from those with a deletion only.
European Journal of Human Genetics | 2006
Marjolein Kriek; Stefan J. White; Karoly Szuhai; Jeroen Knijnenburg; Gert-Jan B. van Ommen; Johan T. den Dunnen; Martijn H. Breuning
Duplicons, that is, DNA sequences with minimum length 10 kb and a high sequence similarity, are known to cause unequal homologous recombination, leading to deletions and the reciprocal duplications. In this study, we designed a Multiplex Amplifiable Probe Hybridisation (MAPH) assay containing 63 exon-specific single-copy sequences from within a selection of the 169 regions flanked by duplicons that were identified, at a first pass, in 2001. Subsequently, we determined the frequency of chromosomal rearrangements among patients with developmental delay (DD) and/or congenital malformations (CM). In addition, we tried to identify new regions involved in DD/CM using the same assay. In 105 patients, six imbalances (5.8%) were detected and verified. Three of these were located in microdeletion-related regions, two alterations were polymorphic duplications and the effect of the last alteration is currently unknown. The same study population was tested for rearrangements in regions with no known duplicons nearby, using a set of probes derived from 58 function-selected genes. The latter screening revealed two alterations. As expected, the alteration frequency per unit of DNA is much higher in regions flanked by duplicons (fraction of the genome tested: 5.2%) compared to regions without known duplicons nearby (fraction of the genome tested: 24.5–90.2%). We were able to detect three novel rearrangements, including the previously undescribed reciprocal duplication of the Williams Beuren critical region, a subduplicon alteration within this region and a duplication on chromosome band 16p13.11. Our results support the hypothesis that regions flanked by duplicons are enriched for copy number variations.
Cytogenetic and Genome Research | 2006
Ana Cristina Krepischi-Santos; J. A. Paz; Jeroen Knijnenburg; Karoly Szuhai; Carla Rosenberg; Célia P. Koiffmann
About 15% of patients with a clinical phenotype of Angelman syndrome (AS) have an unknown etiology. We report a patient with features reminiscent of AS, including a pattern of characteristic facial anomalies as well as speech impairment, developmental delay and frequent laughter. In addition, the patient had features not commonly associated with AS such as heart malformations and scoliosis. She was negative in SNURF-SNRPN exon 1 methylation studies and the G-banded karyotype was normal. Array-based comparative genomic hybridization disclosed a deletion of maximally 1 Mb at 17q21.31. The deleted region contains the MAPT gene, implicated in late onset neurodegenerative disorders, and the STH and NP_056258.1 genes. Another gene, such as CRHR1, might also be included based on maximum possible size of the deletion. We suggest that microdeletions within the 17q21.31 segment should be considered as a possible cause of phenotypes resembling AS, particularly when easily controlled seizures and/or cardiac abnormalities are also present.