Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen R. Huyghe is active.

Publication


Featured researches published by Jeroen R. Huyghe.


Nature Genetics | 2013

Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion

Jeroen R. Huyghe; Anne U. Jackson; Marie P. Fogarty; Martin L. Buchkovich; Alena Stančáková; Heather M. Stringham; Xueling Sim; Lingyao Yang; Christian Fuchsberger; Henna Cederberg; Peter S. Chines; Tanya M. Teslovich; Jane Romm; Hua Ling; Ivy McMullen; Roxann G. Ingersoll; Elizabeth W. Pugh; Kimberly F. Doheny; Benjamin M. Neale; Mark J. Daly; Johanna Kuusisto; Laura J. Scott; Hyun Min Kang; Francis S. Collins; Gonçalo R. Abecasis; Richard M. Watanabe; Michael Boehnke; Markku Laakso; Karen L. Mohlke

Insulin secretion has a crucial role in glucose homeostasis, and failure to secrete sufficient insulin is a hallmark of type 2 diabetes. Genome-wide association studies (GWAS) have identified loci contributing to insulin processing and secretion; however, a substantial fraction of the genetic contribution remains undefined. To examine low-frequency (minor allele frequency (MAF) 0.5–5%) and rare (MAF < 0.5%) nonsynonymous variants, we analyzed exome array data in 8,229 nondiabetic Finnish males using the Illumina HumanExome Beadchip. We identified low-frequency coding variants associated with fasting proinsulin concentrations at the SGSM2 and MADD GWAS loci and three new genes with low-frequency variants associated with fasting proinsulin or insulinogenic index: TBC1D30, KANK1 and PAM. We also show that the interpretation of single-variant and gene-based tests needs to consider the effects of noncoding SNPs both nearby and megabases away. This study demonstrates that exome array genotyping is a valuable approach to identify low-frequency variants that contribute to complex traits.


Jaro-journal of The Association for Research in Otolaryngology | 2008

Occupational Noise, Smoking, and a High Body Mass Index are Risk Factors for Age-related Hearing Impairment and Moderate Alcohol Consumption is Protective: A European Population-based Multicenter Study

Erik Fransen; Vedat Topsakal; Jan Hendrickx; Lut Van Laer; Jeroen R. Huyghe; Els Van Eyken; Nele Lemkens; Samuli Hannula; Elina Mäki-Torkko; M. Jensen; Kelly Demeester; Anke Tropitzsch; Amanda Bonaconsa; Manuela Mazzoli; Angeles Espeso; K. Verbruggen; J. Huyghe; P.L.M. Huygen; Sylvia J. W. Kunst; Minna Manninen; Amalia Diaz-Lacava; Michael Steffens; Thomas F. Wienker; Ilmari Pyykkö; C.W.R.J. Cremers; Hannie Kremer; Ingeborg Dhooge; Dafydd Stephens; Eva Orzan; Markus Pfister

A multicenter study was set up to elucidate the environmental and medical risk factors contributing to age-related hearing impairment (ARHI). Nine subsamples, collected by nine audiological centers across Europe, added up to a total of 4,083 subjects between 53 and 67 years. Audiometric data (pure-tone average [PTA]) were collected and the participants filled out a questionnaire on environmental risk factors and medical history. People with a history of disease that could affect hearing were excluded. PTAs were adjusted for age and sex and tested for association with exposure to risk factors. Noise exposure was associated with a significant loss of hearing at high sound frequencies (>1 kHz). Smoking significantly increased high-frequency hearing loss, and the effect was dose-dependent. The effect of smoking remained significant when accounting for cardiovascular disease events. Taller people had better hearing on average with a more pronounced effect at low sound frequencies (<2 kHz). A high body mass index (BMI) correlated with hearing loss across the frequency range tested. Moderate alcohol consumption was inversely correlated with hearing loss. Significant associations were found in the high as well as in the low frequencies. The results suggest that a healthy lifestyle can protect against age-related hearing impairment.


Human Molecular Genetics | 2009

GRM7 variants confer susceptibility to age-related hearing impairment

Rick A. Friedman; Lut Van Laer; Matthew J. Huentelman; Sonal S. Sheth; Els Van Eyken; Jason J. Corneveaux; Waibhav Tembe; Rebecca F. Halperin; Ashley Q. Thorburn; Sofie Thys; Sarah Bonneux; Erik Fransen; Jeroen R. Huyghe; Ilmari Pyykkö; C.W.R.J. Cremers; H. Kremer; Ingeborg Dhooge; Dafydd Stephens; Eva Orzan; Markus Pfister; Michael Bille; Agnete Parving; Martti Sorri; Paul Van de Heyning; Linna Makmura; Jeffrey D. Ohmen; Frederick H. Linthicum; Jose N. Fayad; John V. Pearson; David Craig

Age-related hearing impairment (ARHI), or presbycusis, is the most prevalent sensory impairment in the elderly. ARHI is a complex disease caused by an interaction between environmental and genetic factors. Here we describe the results of the first whole genome association study for ARHI. The study was performed using 846 cases and 846 controls selected from 3434 individuals collected by eight centers in six European countries. DNA pools for cases and controls were allelotyped on the Affymetrix 500K GeneChip for each center separately. The 252 top-ranked single nucleotide polymorphisms (SNPs) identified in a non-Finnish European sample group (1332 samples) and the 177 top-ranked SNPs from a Finnish sample group (360 samples) were confirmed using individual genotyping. Subsequently, the 23 most interesting SNPs were individually genotyped in an independent European replication group (138 samples). This resulted in the identification of a highly significant and replicated SNP located in GRM7, the gene encoding metabotropic glutamate receptor type 7. Also in the Finnish sample group, two GRM7 SNPs were significant, albeit in a different region of the gene. As the Finnish are genetically distinct from the rest of the European population, this may be due to allelic heterogeneity. We performed histochemical studies in human and mouse and showed that mGluR7 is expressed in hair cells and in spiral ganglion cells of the inner ear. Together these data indicate that common alleles of GRM7 contribute to an individuals risk of developing ARHI, possibly through a mechanism of altered susceptibility to glutamate excitotoxicity.


Molecular Ecology | 2011

Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest.

Tom Callens; P. Galbusera; Erik Matthysen; Eric Durand; Mwangi Githiru; Jeroen R. Huyghe; Luc Lens

Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species‐specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi‐strata capture–recapture models, to infer changes in mobility over time in seven sympatric, forest‐dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post‐fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest‐dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.


European Journal of Human Genetics | 2010

A genome-wide association study for age-related hearing impairment in the Saami

Lut Van Laer; Jeroen R. Huyghe; Samuli Hannula; Els Van Eyken; Dietrich A. Stephan; Elina Mäki-Torkko; Pekka Aikio; Erik Fransen; Alana Lysholm-Bernacchi; Martti Sorri; Matthew J. Huentelman; Guy Van Camp

This study aimed at contributing to the elucidation of the genetic basis of age-related hearing impairment (ARHI), a common multifactorial disease with an important genetic contribution as demonstrated by heritability studies. We conducted a genome-wide association study (GWAS) in the Finnish Saami, a small, ancient, genetically isolated population without evidence of demographic expansion. The choice of this study population was motivated by its anticipated higher extent of LD, potentially offering a substantial power advantage for association mapping. DNA samples and audiometric measurements were collected from 352 Finnish Saami individuals, aged between 50 and 75 years. To reduce the burden of multiple testing, we applied principal component (PC) analysis to the multivariate audiometric phenotype. The first three PCs captured 80% of the variation in hearing thresholds, while maintaining biologically important audiometric features. All subjects were genotyped with the Affymetrix 100 K chip. To account for multiple levels of relatedness among subjects, as well as for population stratification, association testing was performed using a mixed model. We summarised the top-ranking association signals for the three traits under study. The top-ranked SNP, rs457717 (P-value 3.55 × 10−7), was associated with PC3 and was localised in an intron of the IQ motif-containing GTPase-activating-like protein (IQGAP2). Intriguingly, the SNP rs161927 (P-value 0.000149), seventh-ranked for PC1, was positioned immediately downstream from the metabotropic glutamate receptor-7 gene (GRM7). As a previous GWAS of a European and Finnish sample set already suggested a role for GRM7 in ARHI, this study provides further evidence for the involvement of this gene.


PLOS Genetics | 2015

Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

Anubha Mahajan; Xueling Sim; Hui Jin Ng; Alisa K. Manning; Manuel A. Rivas; Heather M Highland; Adam E. Locke; Niels Grarup; Hae Kyung Im; Pablo Cingolani; Jason Flannick; Pierre Fontanillas; Christian Fuchsberger; Kyle J. Gaulton; Tanya M. Teslovich; N. William Rayner; Neil R. Robertson; Nicola L. Beer; Jana K. Rundle; Jette Bork-Jensen; Claes Ladenvall; Christine Blancher; David Buck; Gemma Buck; Noël P. Burtt; Stacey Gabriel; Anette P. Gjesing; Christopher J. Groves; Mette Hollensted; Jeroen R. Huyghe

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Journal of Bone and Mineral Research | 2007

Association of Bone Morphogenetic Proteins With Otosclerosis

Isabelle Schrauwen; Melissa Thys; Kathleen Vanderstraeten; Erik Fransen; Nele Dieltjens; Jeroen R. Huyghe; Megan Ealy; Mireille Claustres; Cor R.W.J. Cremers; Ingeborg Dhooge; Frank Declau; Paul Van de Heyning; Robert Vincent; Thomas Somers; Erwin Offeciers; Richard J.H. Smith; Guy Van Camp

We studied the role of polymorphisms in 13 candidate genes on the risk of otosclerosis in two large independent case‐control sets. We found significant association in both populations with BMP2 and BMP4, implicating these two genes in the pathogenesis of this disease.


European Journal of Human Genetics | 2009

Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations

Annelies Konings; Lut Van Laer; Sophie Michel; Malgorzata Pawelczyk; Per-Inge Carlsson; Marie-Louise Bondeson; Elzbieta Rajkowska; Adam Dudarewicz; Ann Vandevelde; Erik Fransen; Jeroen R. Huyghe; Erik Borg; Mariola Sliwinska-Kowalska; Guy Van Camp

Noise-induced hearing loss (NIHL) is one of the most important occupational health hazards. Millions of people worldwide are exposed daily to harmful levels of noise. NIHL is a complex disease resulting from an interaction between genetic and environmental factors. Although the environmental risk factors have been studied extensively, little is known about the genetic factors. Heat-shock proteins (HSPs) are induced after exposure to severe noise. When first induced by exposure to moderate sound levels, they can protect the ear from damage from excessive noise exposure. This protection is highly variable between individuals. An association of HSP70 genes with NIHL has been described by Yang et al (2006) in a Chinese sample set of noise-exposed workers. In this study, three polymorphisms (rs1043618, rs1061581 and rs2227956) in HSP70-1, HSP70-2 and HSP70-hom, respectively, were genotyped in 206 Swedish and 238 Polish DNA samples of noise-exposed subjects and analyzed. One SNP, rs2227956 in HSP70-hom, resulted in a significant association with NIHL in both sample sets. In addition, rs1043618 and rs1061581 were significant in the Swedish sample set. Analysis of the haplotypes composed of the three SNPs revealed significant associations between NIHL and haplotype GAC in both sample sets and with haplotype CGT in the Swedish sample set. In conclusion, this study replicated the association of HSP70 genes with NIHL in a second and third independent noise-exposed sample set, hereby adding to the evidence that HSP70 genes may be NIHL susceptibility genes.


Annals of Human Genetics | 2009

Candidate Gene Association Study for Noise-induced Hearing Loss in Two Independent Noise-exposed Populations

Annelies Konings; L. Van Laer; A. Wiktorek-Smagur; Elzbieta Rajkowska; Malgorzata Pawelczyk; Per-Inge Carlsson; Marie-Louise Bondeson; Adam Dudarewicz; Ann Vandevelde; Erik Fransen; Jeroen R. Huyghe; Erik Borg; Mariola Sliwinska-Kowalska; G. Van Camp

Millions of people are daily exposed to high levels of noise. Consequently, noise‐induced hearing loss (NIHL) is one of the most important occupational health hazards worldwide. In this study, we performed an association study for NIHL based on a candidate gene approach. 644 Single Nucleotide Polymorphisms (SNPs) in 53 candidate genes were analyzed in two independent NIHL sample sets, a Swedish set and part of a Polish set. Eight SNPs with promising results were selected and analysed in the remaining part of the Polish samples. One SNP in PCDH15 (rs7095441), resulted in significant associations in both sample sets while two SNPs in MYH14 (rs667907 and rs588035), resulted in significant associations in the Polish sample set and significant interactions with noise exposure level in the Swedish sample set. Calculation of odds ratios revealed a significant association of rs588035 with NIHL in the Swedish high noise exposure level group. Our studies suggest that PCDH15 and MYH14 may be NIHL susceptibility genes, but further replication in independent sample sets is mandatory.


American Journal of Human Genetics | 2008

Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait.

Jeroen R. Huyghe; Lut Van Laer; Jan Hendrickx; Erik Fransen; Kelly Demeester; Vedat Topsakal; Sylvia J. W. Kunst; Minna Manninen; M. Jensen; Amanda Bonaconsa; Manuela Mazzoli; Manuela Baur; Samuli Hannula; Elina Mäki-Torkko; Angeles Espeso; Els Van Eyken; Antonia Flaquer; Christian Becker; Dafydd Stephens; Martti Sorri; Eva Orzan; Michael Bille; Agnete Parving; Ilmari Pyykkö; C.W.R.J. Cremers; H. Kremer; Paul Van de Heyning; Thomas F. Wienker; Peter Nürnberg; Markus Pfister

Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait.

Collaboration


Dive into the Jeroen R. Huyghe's collaboration.

Top Co-Authors

Avatar

Lut Van Laer

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis S. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tabitha A. Harrison

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Markku Laakso

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge