Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen van Hunen is active.

Publication


Featured researches published by Jeroen van Hunen.


Tectonophysics | 2002

On the role of subducting oceanic plateaus in the development of shallow flat subduction

Jeroen van Hunen; Arie P. van den Berg; Nico J. Vlaar

Abstract Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600–700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.


Journal of Geophysical Research | 2003

Controls on sublithospheric small‐scale convection

Jinshui Huang; Shijie Zhong; Jeroen van Hunen

[1] The Pacific upper mantle structures revealed from recent seismic studies prompt us to study the dynamics of sublithospheric small-scale convection (SSC) derived from thermal boundary layer instabilities of cooling lithosphere. As oceanic lithosphere cools and thickens, its sublayer may go unstable, thus producing SSC in the asthenosphere. By formulating two-dimensional (2-D) and three-dimensional (3-D) numerical models with realistic mantle rheology, we examine the controls on the onset time of SSC and its dynamic consequences. The onset of SSC is mainly controlled by two parameters: activation energy and asthenospheric viscosity, which can be recast as the FrankKamenetskii parameter q and a Rayleigh number Rai, respectively. Our models show that the onset time of SSC, tc, scales as Rai � 0.68 q 0.74 , independent of 2-D or 3-D geometry. Our scaling coefficient for q is significantly smaller than that from previous studies, but the weaker dependence on activation energy confirms the result of Korenaga and Jordan [2003]. We found that thermal structure associated with age offset across fracture zones has significant effects on the onset of SSC, and it causes the SSC to occur always first near the fracture zones. Asthenospheric thickness and plate motion may also have significant effects on the onset of SSC. When the thickness of asthenosphere is sufficiently small to be comparable with the wavelength of the SSC, the onset may be delayed significantly. Plate motion also tends to delay the onset of the SSC in our 2-D models. Although at the onset of SSC surface heat flux Q is consistent with the half-space cooling model prediction, Q may eventually deviate from the half-space cooling model prediction as thermal perturbations associated with SSC diffuse through the stable part of lithosphere or stagnant lid to the surface. We found that the time it takes for Q to deviate from the half-space cooling model after the onset of SSC, t, scales as Rai � 0.65 q 1.52 , while the thickness of the stagnant lid at the onset time, d, scales as Rai � 0.33 q 0.78 , which is consistent


Earth and Planetary Science Letters | 2000

A thermo-mechanical model of horizontal subduction below an overriding plate

Jeroen van Hunen; Arie P. van den Berg; Nico J. Vlaar

Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This mechanism leads to shallow flattening of the slab as observed today under parts of the west coast of North and South America. Here this process is examined by means of numerical modeling. The convergence velocity between oceanic and continental lithospheric plates is computed from the modeling results, and the ratio of the subduction velocity over the overriding velocity is used as a diagnostic of the efficiency of the ongoing subduction process. We have investigated several factors influencing the mechanical resistance working against the subduction process. In particular, we have studied the effect of a preexisting lithospheric fault with a depth dependent shear resistance, partly decoupling the oceanic lithosphere from the overriding continent. We also investigated the lubricating effect of a 7 km thick basaltic crustal layer on the efficiency of the subduction process and found a log^linear relation between convergence rate and viscosity prefactor characterizing the strength of the oceanic crust, for a range of parameter values including values for basaltic rocks, derived from empirical data. A strong mantle fixes the subducting slab while being overridden and prevents the slab from further subduction in a Benioff style. Viscous heating lowers the coupling strength of the crustal interface between the converging plates with about half an order of magnitude and therefore contributes significantly to the subduction process. Finally, when varying the overriding velocity from 2.5 to 10 cm yr 31 , we found a non-linear increase of the subduction velocity due to the presence of non-linear mantle rheology. These results indicate that active obduction of oceanic lithosphere by an overriding continental lithosphere is a viable mechanism for shallow flat subduction over a wide range of model parameters. fl 2000 Elsevier Science B.V. All rights reserved.


Earth and Planetary Science Letters | 2002

The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity

Hana Čížková; Jeroen van Hunen; Arie P. van den Berg; Nico J. Vlaar

Results of high resolution seismic tomography showing subducting slabs deflected in the transition zone and thickened in the lower mantle seem to call for slab material weaker than inferred from mineral physics deformation mechanisms. A possible mechanism suggested by several authors could be the weakening due to grain size reduction, which should occur in the cold portion of fast slabs after an exothermic phase transition at a depth of 400 km. Since the amount of weakening as well as the rate of subsequent strengthening due to the grain growth are not precisely known, we present here a parametric study of slab behavior in the transition zone and upper part of the lower mantle. We simulate a subducting slab in a two-dimensional (2-D) Cartesian box in the numerical model with composite rheology including diffusion creep, dislocation creep and a general stress limiting rheology approximating Peierl’s creep. We concentrate on two rheologic effects: the dynamic effect of slab weakening due to grain size reduction at the phase boundary and the effect of yield stress of stress limiting rheology. The effect of trench migration on slab deformation is also included in our study. Results show that the slab ability to penetrate into the lower mantle is not significantly affected by a trench retreat in the absence of grain size weakening. However, in case of a 4 cm/yr trench retreat, grain size weakening provides a viable mechanism to deflect the slab in the transition zone, provided that stress limiting deformation mechanism would limit the effective viscosity outside the areas of grain size weakening to about 10 24 Pa s. < 2002 Elsevier Science B.V. All rights reserved.


Geology | 2012

Short-term episodicity of Archaean plate tectonics

Jean-François Moyen; Jeroen van Hunen

By combining geochemical data and geodynamical models, evidence is provided to address the existence and style of Archaean plate tectonics, a topic of vigorous debate for decades. Using careful analyses of lithostratigraphic Archaean assemblages and numerical model results, we illustrate that a short-term episodic style of subduction was a viable style of tectonics in the early Earth. Modeling results show how, due to the low strength of slabs in a hotter Earth, frequent slab break-off events prevented a modern-style long-lived subduction system, and resulted in frequent cessation and re-initiation of the subduction process on a typical time scale of a few million years. Results fit with geochemical observations that suggest frequent alternation of arc-style and non-arc-style volcanism on a similarly short time scale. Such tectonics could provide the link between early pre-plate tectonic style of tectonics (or stagnant-lid convection) and modern-style plate tectonics, in which short-term episodes of proto-subduction evolved over time into a longer-term, more successful style of plate tectonics as mantle temperature decayed.


Geochemistry Geophysics Geosystems | 2014

Dynamics of lithospheric thinning and mantle melting by edge‐driven convection: Application to Moroccan Atlas mountains

Lars Kaislaniemi; Jeroen van Hunen

Edge-driven convection (EDC) forms in the upper mantle at locations of lithosphere thickness gradients, e.g., craton edges. In this study we show how the traditional style of EDC, a convection cell governed by the cold downwelling below an edge alternates with another style of EDC, in which the convection cell forms as a secondary feature with a hot asthenospheric shear flow from underneath the thicker lithosphere. These alternating EDC styles produce episodic lithosphere erosion and decompression melting. Three-dimensional models of EDC show that convection rolls form perpendicular to the thickness gradient at the lithosphere-asthenosphere boundary. Stagnant-lid convection scaling laws are used to gain further insight in the underlying physical processes. Application of our models to the Moroccan Atlas mountains region shows that the combination of these two styles of EDC can reproduce many of the observations from the Atlas mountains, including two distinct periods of Cenozoic volcanism, a semicontinuous corridor of thinned lithosphere under the Atlas mountains, and piecewise delamination of the lithosphere. A very good match between observations and numerical models is found for the lithosphere thicknesses across the study area, amounts of melts produced, and the length of the quiet gap in between volcanic episodes show quantitative match to observations.


Geophysical Research Letters | 2014

The effect of metastable pyroxene on the slab dynamics

Roberto Agrusta; Jeroen van Hunen; Saskia Goes

Seismic studies show that some subducting slabs penetrate straight into the lower mantle, whereas others seem to flatten near the base of the mantle transition zone. Slab stagnation is often attributed to an increase in viscosity and phase transformations in the olivine system. However, recent mineral physics studies showed that due to extremely low transformational diffusion rates, low-density metastable pyroxene may persist into the transition zone in cool slabs. Here we use a dynamically fully self-consistent subduction model to investigate the influence of metastable pyroxene on the dynamics of subducting oceanic lithosphere. Our results show that metastable pyroxene affects slab buoyancy at least as much as olivine metastability. However, unlike metastable olivine, which can inhibit slab penetration in the lower mantle only for cold, old, and fast slabs, metastable pyroxene is likely to also affect sinking of relatively young and slow slabs.


Earth and Planetary Science Letters | 2001

Latent heat effects of the major mantle phase transitions on low-angle subduction

Jeroen van Hunen; Arie P. van den Berg; Nico J. Vlaar

Abstract Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4–5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300–400 km. Varying the olivine–spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.


Geochemistry Geophysics Geosystems | 2015

The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening

Hongliang Wang; Jeroen van Hunen; D. Graham Pearson

Geologically rapid (tens of Myr) partial removal of thick continental lithosphere is evident beneath Precambrian terranes, such as North China Craton, southern Africa, and the North Atlantic Craton, and has been linked with thermomechanical erosion by mantle plumes. We performed numerical experiments with realistic viscosities to test this hypothesis and constrain the most important parameters that influence cratonic lithosphere erosion. Our models indicate that the thermomechanical erosion by a plume impact on typical Archean lithospheric mantle is unlikely to be more effective than long-term erosion from normal plate-mantle interaction. Therefore, unmodified cratonic roots that have been stable for billions of years will not be significantly disrupted by the erosion of a plume event. However, the buoyancy and strength of highly depleted continental roots can be modified by fluid-melt metasomatism, and our models show that this is essential for the thinning of originally stable continental roots. The long-term but punctuated history of metasomatic enrichment beneath ancient continents makes this mode of weakening very likely. The effect of the plume impact is to speed up the erosion significantly and help the removal of the lithospheric root to occur within tens of Myr if affected by metasomatic weakening.


Lithosphere | 2009

On the relation between trench migration, seafloor age, and the strength of the subducting lithosphere

Erika di Giuseppe; Claudio Faccenna; Francesca Funiciello; Jeroen van Hunen; Domenico Giardini

Oceanic lithosphere thickens and strengthens as it grows older. Worldwide databases reveal that the age of the slab to a certain extent controls the subduction style. Old and thick (and consequently strong) slabs show a trench “advance,” while younger, thin (weak) slabs are migrating in retreating style (trench “rollback”). We performed numerical models to show that this configuration could be the result of the dynamic equilibrium between gravity and resisting forces. In particular we show that energy dissipation caused by bending and unbending of the slab, although less important than other resisting forces, could be a primary control on trench migration. Our results fit well with global compilations of kinematic data from modern subduction zones in two reference frames with different amounts of net rotations. Based on the age at which the transition from retreating to advancing style occurs, we propose an effective lithosphere/mantle viscosity of ~200 during bending of the lithosphere into the subduction zone.

Collaboration


Dive into the Jeroen van Hunen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shijie Zhong

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge