Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome A. Orosz is active.

Publication


Featured researches published by Jerome A. Orosz.


Nature | 2011

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack J. Lissauer; Daniel C. Fabrycky; Eric B. Ford; William J. Borucki; Francois Fressin; Geoffrey W. Marcy; Jerome A. Orosz; Jason F. Rowe; Guillermo Torres; William F. Welsh; Natalie M. Batalha; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Joshua A. Carter; David Charbonneau; Jessie L. Christiansen; William D. Cochran; Jean-Michel Desert; Edward W. Dunham; Michael N. Fanelli; Jonathan J. Fortney; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Michael R. Haas; Jennifer R. Hall; Matthew J. Holman; David G. Koch; David W. Latham

When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.


Science | 2011

Kepler-16: a transiting circumbinary planet.

Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prˇsa; William F. Welsh; Samuel N. Quinn; David W. Latham; Guillermo Torres; Lars A. Buchhave; Geoffrey W. Marcy; Jonathan J. Fortney; Avi Shporer; Eric B. Ford; Jack J. Lissauer; Darin Ragozzine; Michael Rucker; Natalie M. Batalha; Jon M. Jenkins; William J. Borucki; David G. Koch; Christopher K. Middour; Jennifer R. Hall; Sean McCauliff; Michael N. Fanelli; Elisa V. Quintana; Matthew J. Holman

An exoplanet has been observed, comparable in size and mass to Saturn, that orbits a pair of stars. We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.


Nature | 2012

Transiting circumbinary planets Kepler-34 b and Kepler-35 b

William F. Welsh; Jerome A. Orosz; Joshua A. Carter; Daniel C. Fabrycky; Eric B. Ford; Jack J. Lissauer; Andrej Prsa; Samuel N. Quinn; Darin Ragozzine; Donald R. Short; Guillermo Torres; Joshua N. Winn; Laurance R. Doyle; Natalie M. Batalha; S. Bloemen; Erik Brugamyer; Lars A. Buchhave; Caroline Caldwell; Douglas A. Caldwell; Jessie L. Christiansen; David R. Ciardi; William D. Cochran; Michael Endl; Jonathan J. Fortney; Thomas N. Gautier; Ronald L. Gilliland; Michael R. Haas; Jennifer R. Hall; Matthew J. Holman; Andrew W. Howard

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a ‘circumbinary planet’ orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun’s mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.


Science | 2010

Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations

Matthew J. Holman; Daniel C. Fabrycky; Darin Ragozzine; Eric B. Ford; Jason H. Steffen; William F. Welsh; Jack J. Lissauer; David W. Latham; Geoffrey W. Marcy; Lucianne M. Walkowicz; Natalie M. Batalha; Jon M. Jenkins; Jason F. Rowe; William D. Cochran; Francois Fressin; Guillermo Torres; Lars A. Buchhave; Dimitar D. Sasselov; William J. Borucki; David G. Koch; Gibor Basri; Timothy M. Brown; Douglas A. Caldwell; David Charbonneau; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Michael R. Haas; Steve B. Howell

Extra Exoplanet? A planet is said to transit its star if it can be seen to pass in front of the star; 19% of the known extrasolar planets are transiting planets. A lone planet will transit in an exactly periodic manner; if other planets are present, however, variations in transit duration are expected because of gravitational interactions. Holman et al. (p. 51, published online 26 August; see the cover; see the Perspective by Laughlin) report timing variations in the transits of two exoplanets detected by the Kepler space telescope. The planets have masses similar to that of Saturn and transit the same Sun-like star. A third planet several times the mass of Earth may also transit the star in an interior orbit. Two Saturn-size planets show variations in the times they take to transit their star due to gravitational interaction. The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth–size planet candidate with a period of 1.6 days.


The Astronomical Journal | 2011

Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

Andrej Prsa; Natalie M. Batalha; Robert W. Slawson; Laurance R. Doyle; William F. Welsh; Jerome A. Orosz; Sara Seager; Michael Rucker; Kimberly Mjaseth; Scott G. Engle; Kyle E. Conroy; Jon M. Jenkins; Douglas A. Caldwell; David G. Koch; William J. Borucki

The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B – V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.


Science | 2012

Kepler-47: A Transiting Circumbinary Multiplanet System

Jerome A. Orosz; William F. Welsh; Joshua A. Carter; Daniel C. Fabrycky; William D. Cochran; Michael Endl; Eric B. Ford; Nader Haghighipour; Phillip J. MacQueen; Tsevi Mazeh; Roberto Sanchis-Ojeda; Donald R. Short; Guillermo Torres; Eric Agol; Lars A. Buchhave; Laurance R. Doyle; Howard Isaacson; Jack J. Lissauer; Geoffrey W. Marcy; Avi Shporer; Gur Windmiller; Alan P. Boss; Bruce D. Clarke; Jonathan J. Fortney; John C. Geary; Matthew J. Holman; Daniel Huber; Jon M. Jenkins; Karen Kinemuchi; Ethan Kruse

A Pair of Planets Around a Pair of Stars Most of the planets we know about orbit a single star; however, most of the stars in our galaxy are not single. Based on data from the Kepler space telescope, Orosz et al. (p. 1511, published online 28 August) report the detection of a pair of planets orbiting a pair of stars. These two planets are the smallest of the known transiting circumbinary planets and have the shortest and longest orbital periods. The outer planet resides in the habitable zone—the “goldilocks” region where the temperatures could allow liquid water to exist. This discovery establishes that, despite the chaotic environment around a close binary star, a system of planets can form and persist. Data from the Kepler space telescope reveal two small planets orbiting a pair of two low-mass stars. We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet’s orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical “habitable zone,” where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.


The Astrophysical Journal | 2011

The Mass of the Black Hole in Cygnus X-1

Jerome A. Orosz; Jeffrey E. McClintock; Jason Paul Aufdenberg; Ronald A. Remillard; M. J. Reid; Ramesh Narayan; Lijun Gou

Cygnus X-1 is a binary star system that is comprised of a black hole and a massive giant companion star in a tight orbit. Building on our accurate distance measurement reported in the preceding paper, we first determine the radius of the companion star, thereby constraining the scale of the binary system. To obtain a full dynamical model of the binary, we use an extensive collection of optical photometric and spectroscopic data taken from the literature. By usingalloftheavailableobservationalconstraints,weshowthattheorbitisslightlyeccentric(boththeradialvelocity and photometric data independently confirm this result) and that the companion star rotates roughly 1.4 times its pseudosynchronous value. We find a black hole mass of M = 14.8 ± 1.0 M� , a companion mass of Mopt = 19.2 ± 1.9 M� , and the angle of inclination of the orbital plane to our line of sight of i = 27.1 ± 0. 8d eg.


The Astrophysical Journal | 2001

Optical and Infrared Photometry of the Microquasar GRO J1655–40 in Quiescence

Jenny Greene; Charles D. Bailyn; Jerome A. Orosz

We present BVIJK photometry of the black hole candidate GRO J1655-40 in full quiescence. We report a refined orbital period of 2.62191 ± 0.00020 days. The light curves are dominated by ellipsoidal variations from the secondary star. We model the light curves with an upgraded code that includes a more accurate treatment of limb darkening. Previous models containing a large cool disk are ruled out, and, indeed, our data can be fitted with a pure ellipsoidal light curve without any disk contribution. In general agreement with previous results, we derive a confidence region of the correlated quantities inclination and mass ratio, centered on an inclination of 702 ± 19 and mass ratio of 2.6 ± 0.3, resulting in a primary mass M1 = 6.3 ± 0.5 M☉ (all 95% confidence). The complex limits and errors on these values and on the possible disk contribution to the light curve are discussed.


The Astrophysical Journal | 2001

A black hole in the superluminal source sax j1819.3-2525 (v4641 sgr)

Jerome A. Orosz; Erik Kuulkers; M. van der Klis; Jeffrey E. McClintock; M. R. Garcia; Paul J. Callanan; Charles D. Bailyn; Raj K. Jain; Ronald A. Remillard

Spectroscopic observations of the fast X-ray transient and superluminal jet source SAX J1819.3-2525 (V4641 Sgr) reveal a best-fitting period of Pspect = 2.81678 ± 0.00056 days and a semiamplitude of K2 = 211.0 ± 3.1 km s-1. The optical mass function is f(M) = 2.74 ± 0.12 M☉. We find a photometric period of Pphoto = 2.81730 ± 0.00001 days using a light curve measured from photographic plates. The folded light curve resembles an ellipsoidal light curve with two maxima of roughly equal height and two minima of unequal depth per orbital cycle. The secondary star is a late B-type star that has evolved off the main sequence. Using a moderate resolution spectrum (R = 7000) we measure Teff = 10500 ± 200 K, log g = 3.5 ± 0.1, and Vrot sin i = 123 ± 4 km s-1 (1 σ errors). Assuming synchronous rotation, our measured value of the projected rotational velocity implies a mass ratio of Q ≡ M1/M2 = 1.50 ± 0.08 (1 σ). The lack of X-ray eclipses implies an upper limit to the inclination of i ≤ 707. On the other hand, the large amplitude of the folded light curve (≈0.5 mag) implies a large inclination (i 60°). Using the above mass function, mass ratio, and inclination range, the mass of the compact object is in the range 8.73 ≤ M1 ≤ 11.70 M☉ and the mass of the secondary star is in the range 5.49 ≤ M2 ≤ 8.14 M☉ (90% confidence). The mass of the compact object is well above the maximum mass of a stable neutron star, and we conclude that V4641 Sgr contains a black hole. The B-star secondary is by far the most massive, the hottest, and the most luminous secondary of the dynamically confirmed black hole X-ray transients. We find that the α-process elements nitrogen, oxygen, calcium, magnesium, and titanium may be overabundant in the secondary star by factors of 2-10 times with respect to the Sun. Finally, assuming E(B-V) = 0.32 ± 0.10, we find a distance 7.40 ≤ d ≤ 12.31 kpc (90% confidence). This large distance and the high proper motions observed for the radio counterpart make V4641 Sgr possibly the most superluminal galactic source known, with an apparent expansion velocity of 9.5c and a bulk Lorentz factor of Γ 9.5, assuming that the jets were ejected during one of the bright X-ray flares observed with the Rossi X-ray Timing Explorer.


Science | 2002

Large-Scale, Decelerating, Relativistic X-ray Jets from the Microquasar XTE J1550-564

S. Corbel; R. P. Fender; A. K. Tzioumis; John A. Tomsick; Jerome A. Orosz; Jon M. Miller; Rudy Wijnands; Philip Kaaret

We have detected, at x-ray and radio wavelengths, large-scale moving jets from the microquasar XTE J1550–564. Plasma ejected from near the black hole traveled at relativistic velocities for at least 4 years. We present direct evidence for gradual deceleration in a relativistic jet. The broadband spectrum of the jets is consistent with synchrotron emission from high-energy (up to 10 tera–electron volts) particles that were accelerated in the shock waves formed within the relativistic ejecta or by the interaction of the jets with the interstellar medium. XTE J1550–564 offers a rare opportunity to study the dynamical evolution of relativistic jets on time scales inaccessible for active galactic nuclei jets, with implications for our understanding of relativistic jets from Galactic x-ray binaries and active galactic nuclei.

Collaboration


Dive into the Jerome A. Orosz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. Remillard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William F. Welsh

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gur Windmiller

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Wade

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge