Jerome A. Werkmeister
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerome A. Werkmeister.
Biochimica et Biophysica Acta | 2001
Henriette Mozsolits; Hans-Ju « rgen Wirth; Jerome A. Werkmeister; Marie-Isabel Aguilar
The lipid binding behaviour of the antimicrobial peptides magainin 1, melittin and the C-terminally truncated analogue of melittin (21Q) was studied with a hybrid bilayer membrane system using surface plasmon resonance. In particular, the hydrophobic association chip was used which is composed of long chain alkanethiol molecules upon which liposomes adsorb spontaneously to create a hybrid bilayer membrane surface. Multiple sets of sensorgrams with different peptide concentrations were generated. Linearisation analysis and curve fitting using numerical integration analysis were performed to derive estimates for the association (k(a)) and dissociation (k(d)) rate constants. The results demonstrated that magainin 1 preferentially interacted with negatively charged dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), while melittin interacted with both zwitterionic dimyristoyl-L-alpha-phosphatidylcholine and anionic DMPG. In contrast, the C-terminally truncated melittin analogue, 21Q, exhibited lower binding affinity for both lipids, showing that the positively charged C-terminus of melittin greatly influences its membrane binding properties. Furthermore the results also demonstrated that these antimicrobial peptides bind to the lipids initially via electrostatic interactions which then enhances the subsequent hydrophobic binding. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high alpha-helicity was associated with high binding affinity. Overall, the results demonstrated that biosensor technology provides a new experimental approach to the study of peptide-membrane interactions through the rapid determination of the binding affinity of bioactive peptides for phospholipids.
Biomaterials | 2009
Sharon L. Edwards; Jeffrey S. Church; Jerome A. Werkmeister; John A. M. Ramshaw
In this study we have prepared a tubular knitted scaffold from a 9 ply multiwalled carbon nanotube (MWCNT) yarn and a composite scaffold, formed by electrospinning poly(lactic-co-glycolic acid) (PLGA) nanofibres onto the knitted scaffold. Both structures were assessed for in vitro biocompatibility with NR6 mouse fibroblast cells for up to 22 days and their suitability as tissue engineering scaffolds considered. The MWCNT yarn was found to support cell growth throughout the culture period, with fibroblasts attaching to, and proliferating on, the yarn surface. The knitted tubular scaffold contained large pores that inhibited cell spanning, leading to the formation of cell clusters on the yarn, and an uneven cell distribution on the scaffold surface. The smaller pores, created through electrospinning, were found to promote cell spanning, leading to a uniform distribution of cells on the composite scaffold surface. Evaluation of the electrical and mechanical properties of the knitted scaffold determined resistance levels of 0.9 kOmega/cm, with a breaking load and extension to break approaching 0.7N and 8%, respectively. The PLGA/MWCNT composite scaffold presented in this work not only supports cell growth, but also has the potential to utilize the full range of electrical and mechanical properties that carbon nanotubes have to offer.
Biomaterials | 2010
Christopher M. Elvin; Tony Vuocolo; Alan G. Brownlee; Lillian Sando; Mickey G. Huson; Nancy E. Liyou; Peter Stockwell; Russell E. Lyons; Mi-Sook Kim; Glenn A. Edwards; Graham Johnson; Gail A. McFarland; John A. M. Ramshaw; Jerome A. Werkmeister
Gelatin is widely used as a medical biomaterial because it is readily available, cheap, biodegradable and demonstrates favourable biocompatibility. Many applications require stabilisation of the biomaterial by chemical crosslinking, and this often involves derivatisation of the protein or treatment with cytotoxic crosslinking agents. We have previously shown that a facile photochemical method, using blue light, a ruthenium catalyst and a persulphate oxidant, produces covalent di-tyrosine crosslinks in resilin and fibrinogen to form stable hydrogel biomaterials. Here we show that various gelatins can also be rapidly crosslinked to form highly elastic (extension to break >650%) and adhesive (stress at break >100 kPa) biomaterials. Although the method does not require derivatisation of the protein, we show that when the phenolic (tyrosine-like) content of gelatin is increased, the crosslinked material becomes resistant to swelling, yet retains considerable elasticity and high adhesive strength. The reagents are not cytotoxic at the concentration used in the photopolymerisation reaction. When tested in vivo in sheep lung, the photopolymerised gelatin effectively sealed a wound in lung tissue from blood and air leakage, was not cytotoxic and did not produce an inflammatory response. The elastic properties, thermal stability, speed of curing and high tissue adhesive strength of this photopolymerised gelatin, offer considerable improvement over current surgical tissue sealants.
Journal of Materials Science: Materials in Medicine | 2009
John A. M. Ramshaw; Yong Y. Peng; Veronica Glattauer; Jerome A. Werkmeister
This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.
Biomedical Materials | 2012
Jerome A. Werkmeister; John A. M. Ramshaw
New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation.
Biomaterials | 2009
Christopher M. Elvin; Alan G. Brownlee; Mickey G. Huson; Tracy A. Tebb; Mi-Sook Kim; Russell E. Lyons; Tony Vuocolo; Nancy E. Liyou; Timothy C. Hughes; John A. M. Ramshaw; Jerome A. Werkmeister
We recently reported the generation of a highly elastic, crosslinked protein biomaterial via a rapid photochemical process using visible light illumination. In light of these findings, we predicted that other unmodified, tyrosine-rich, self-associating proteins might also be susceptible to this covalent crosslinking method. Here we show that unmodified native fibrinogen can also be photochemically crosslinked into an elastic hydrogel biomaterial through the rapid formation of intermolecular dityrosine. Photochemically crosslinked fibrinogen forms tissue sealant bonds at least 5-fold stronger than commercial fibrin glue and is capable of producing maximum bond strength within 20s. In vitro studies showed that components of the photochemical crosslinking reaction are non-toxic to cells. This material will find useful application in various surgical procedures where rapid curing for high strength tissue sealing is required.
Cancer Immunology, Immunotherapy | 2004
Pamela J. Russell; Dean R. Hewish; Teresa Carter; Katy Sterling-Levis; Kim Ow; Meghan Hattarki; Larissa Doughty; Robin E. Guthrie; Deborah Shapira; Peter L. Molloy; Jerome A. Werkmeister; Alexander A. Kortt
Background: Monoclonal antibodies (MAbs) can target therapy to tumours while minimising normal tissue exposure. Efficacy of immunoconjugates containing peptide 101, designed around the first 22 amino acids of bee venom, melittin, to maintain the amphipathic helix, to enhance water solubility, and to increase hemolytic activity, was assessed in nude mice bearing subcutaneous human prostate cancer xenografts. Methods: Mouse MAbs, J591 and BLCA-38, which recognise human prostate cancer cells, were cross-linked to peptide 101 using SPDP. Tumour-bearing mice were used to compare biodistributions of radiolabeled immunoconjugates and MAb, or received multiple sequential injections of immunoconjugates. Therapeutic efficacy was assessed by delay in tumour growth and increased mouse survival. Results: Radiolabeled immunoconjugates and antibodies showed similar xenograft tropism. Systemic or intratumoural injection of immunoconjugates inhibited tumour growth in mice relative to carrier alone, unconjugated antibody and nonspecific antibody-peptide conjugates and improved survival for treated mice. Conclusions: Immunoconjugates deliver beneficial effects; further peptide modifications may increase cytotoxicity.
Biomaterials | 2014
Lingyan Cao; Jerome A. Werkmeister; Jing Wang; Veronica Glattauer; Keith M. McLean; Changsheng Liu
Although rhBMP-2 has excellent ability to accelerate the repair of normal bone defects, limitations of its application exist in the high cost and potential side effects. This study aimed to develop a composite photopolymerisable hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (PH/rhBMP-2/NPs) as the bone substitute to realize segmental bone defect repair at a low growth factor dose. Firstly rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (rhBMP-2/NPs) were prepared and characterized by DLS and TEM. Composite materials, PH/rhBMP-2/NPs were developed and investigated by SEM-EDS as well as a series of physical characterizations. Using hMSCs as an in vitro cell model, composite photopolymerisable hydrogels incorporating NPs (PH/NPs) showed good cell viability, cell adhesion and time dependent cell ingrowth. In vitro release kinetics of rhBMP-2 showed a significantly lower initial burst release from the composite system compared with the growth factor-loaded particles alone or encapsulated directly within the hydrogel, followed by a slow release over time. The bioactivity of released rhBMP-2 was validated by alkaline phosphatase (ALP) activity as well as a mineralization assay. In in vivo studies, the PH/rhBMP-2/NPs induced ectopic bone formation in the mouse thigh. In addition, we further investigated the in vivo effects of rhBMP-2-loaded scaffolds in a rabbit radius critical defect by three dimensional micro-computed tomographic (μCT) imaging, histological analysis, and biomechanical measurements. Animals implanted with the composite hydrogel containing rhBMP-2-loaded nanoparticles underwent gradual resorption with more pronounced replacement by new bone and induced reunion of the bone marrow cavity at 12 weeks, compared with animals implanted with hydrogel encapsulated growth factors alone. These data provided strong evidence that the composite PH/rhBMP-2/NPs are a promising substitute for bone tissue engineering.
Biomaterials | 2015
Paresh A. Parmar; Lesley W. Chow; Jean-Philippe St-Pierre; Christine-Maria Horejs; Yong Y. Peng; Jerome A. Werkmeister; John A. M. Ramshaw; Molly M. Stevens
Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications.
Expert Review of Medical Devices | 2009
Sharon Lee Edwards; Jerome A. Werkmeister; John Am Ramshaw
Carbon nanotubes are hollow graphitic cylinders of nanoscale dimensions. They are electrically conductive, chemically and thermally stable, and exceptionally strong. Given this unique combination of properties there has been much interest in carbon nanotubes, and finding applications for them. One application where this combination of properties may prove useful is in the area of tissue regeneration, incorporating carbon nanotubes into scaffolds for tissue engineering. It is believed that carbon nanotubes may improve scaffold properties and enhance tissue regeneration. This report aims to discuss the suitability of carbon nanotubes as a biomaterial for scaffold production, and the fabrication, properties and performance of carbon nanotube-based scaffolds.
Collaboration
Dive into the Jerome A. Werkmeister's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs