Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome A. Zack is active.

Publication


Featured researches published by Jerome A. Zack.


Nature | 1998

Changes in thymic function with age and during the treatment of HIV infection

Daniel C. Douek; Richard D. McFarland; Phillip H. Keiser; Earl A. Gage; Janice M. Massey; Barton F. Haynes; Michael A. Polis; Ashley T. Haase; Mark B. Feinberg; John L. Sullivan; Beth D. Jamieson; Jerome A. Zack; Louis J. Picker; Richard A. Koup

The thymus represents the major site of the production and generation of T cells expressing αβ-type T-cell antigen receptors. Age-related involution may affect the ability of the thymus to reconstitute T cells expressing CD4 cell-surface antigens that are lost during HIV infection; this effect has been seen after chemotherapy and bone-marrow transplantation,. Adult HIV-infected patients treated with highly active antiretroviral therapy (HAART) show a progressive increase in their number of naive CD4-positive T cells,. These cells could arise through expansion of existing naive T cells in the periphery or through thymic production of new naive T cells,. Here we quantify thymic output by measuring the excisional DNA products of TCR-gene rearrangement. We find that, although thymic function declines with age, substantial output is maintained into late adulthood. HIV infection leads to a decrease in thymic function that can be measured in the peripheral blood and lymphoid tissues. In adults treated with HAART, there is a rapid and sustained increase in thymic output in most subjects. These results indicate that the adult thymus can contribute to immune reconstitution following HAART.


AIDS Research and Human Retroviruses | 2004

The CCR5 and CXCR4 Coreceptors—Central to Understanding the Transmission and Pathogenesis of Human Immunodeficiency Virus Type 1 Infection

John P. Moore; Scott G. Kitchen; Pavel Pugach; Jerome A. Zack

In this review, we will discuss what is known, what is suspected, and what still remains obscure about the central role played by coreceptor expression and usage in the transmission and pathogenic consequences of human immunodeficiency virus type 1 (HIV-1) infection. An emphasis will be on the HIV-1 phenotypic variants that are defined by their usage of the CCR5 or CXCR4 coreceptors, and how the different cellular tropism of these variants influences how and where HIV-1 replicates in vivo. We will also review what might happen when coreceptor antagonists are used clinically to treat HIV-1 infection.


Immunity | 1999

Generation of Functional Thymocytes in the Human Adult

Beth D. Jamieson; Daniel C. Douek; Scott Killian; Lance E. Hultin; Deirdre D. Scripture-Adams; Janis V. Giorgi; Daniel Marelli; Richard A. Koup; Jerome A. Zack

Reconstituting the immune response will be critical for the survival of HIV-infected individuals once viral load is brought under control. While the adult thymus was previously thought to be relatively inactive, new data suggest it may play a role in T cell reconstitution. We examined thymopoiesis in adults up to 56 years of age and found active T cell receptor (TCR) rearrangement, generating a diverse TCR Vbeta repertoire. The resulting thymocytes are functional and are capable of responding to costimulatory signals. These data demonstrate that the adult thymus remains active late in life and contributes functional T cells to the peripheral lymphoid pool.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Retrocyclin: A primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1

Alexander M. Cole; Teresa Hong; Lee Ming Boo; Tung Nguyen; Chengquan Zhao; Greg Bristol; Jerome A. Zack; Alan J. Waring; Otto O. Yang; Robert I. Lehrer

Human bone marrow expresses a pseudogene that encodes an antimicrobial peptide homologous to rhesus monkey circular minidefensins (θ-defensins). We prepared the putative ancestral human peptide by solid-phase synthesis and named it “retrocyclin.” Retrocyclin did not cause direct inactivation of HIV-1, and its modest antibacterial properties resembled those of its rhesus homologs. Nevertheless, retrocyclin had a remarkable ability to inhibit proviral DNA formation and to protect immortalized and primary human CD4+ lymphocytes from in vitro infection by both T-tropic and M-tropic strains of HIV-1. Confocal fluorescent microscopy studies performed with BODIPY-FL-labeled RC-101, a close analog of retrocyclin, showed that the peptide formed patch-like aggregates on the surface of CD4+ cells. These findings suggest that retrocyclin interferes with an early stage of HIV-1 infection and that retrocyclin-like agents might be useful topical agents to prevent sexually acquired HIV-1 infections.


Cell Stem Cell | 2010

Female Human iPSCs Retain an Inactive X Chromosome

Jason Tchieu; Edward Kuoy; Mark H. Chin; Hung Trinh; Michaela Patterson; Sean P. Sherman; Otaren Aimiuwu; Anne Lindgren; Shahrad Hakimian; Jerome A. Zack; Amander T. Clark; April D. Pyle; William E. Lowry; Kathrin Plath

Generating induced pluripotent stem cells (iPSCs) requires massive epigenome reorganization. It is unclear whether reprogramming of female human cells reactivates the inactive X chromosome (Xi), as in mouse. Here we establish that human (h)iPSCs derived from several female fibroblasts under standard culture conditions carry an Xi. Despite the lack of reactivation, the Xi undergoes defined chromatin changes, and expansion of hiPSCs can lead to partial loss of XIST RNA. These results indicate that hiPSCs are epigenetically dynamic and do not display a pristine state of X inactivation with two active Xs as found in some female human embryonic stem cell lines. Furthermore, whereas fibroblasts are mosaic for the Xi, hiPSCs are clonal. This nonrandom pattern of X chromosome inactivation in female hiPSCs, which is maintained upon differentiation, has critical implications for clinical applications and disease modeling, and could be exploited for a unique form of gene therapy for X-linked diseases.


Nature Medicine | 2009

Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells

Ronald T. Mitsuyasu; Thomas C. Merigan; Andrew Carr; Jerome A. Zack; Mark A. Winters; Cassy Workman; Mark Bloch; Jacob Lalezari; Stephen Becker; Lorna Thornton; Bisher Akil; Homayoon Khanlou; Robert Finlayson; R. McFarlane; Don Smith; Roger Garsia; David H.K. Ma; Matthew Law; John M. Murray; Christof von Kalle; Julie A. Ely; Sharon M Patino; Alison Knop; Philip Wong; Alison Velyian Todd; Margaret A. Haughton; Caroline J. Fuery; Janet L. Macpherson; Geoff Symonds; Louise Evans

Gene transfer has potential as a once-only treatment that reduces viral load, preserves the immune system and avoids lifetime highly active antiretroviral therapy. This study, which is to our knowledge the first randomized, double-blind, placebo-controlled, phase 2 cell-delivered gene transfer clinical trial, was conducted in 74 HIV-1-infected adults who received a tat-vpr-specific anti-HIV ribozyme (OZ1) or placebo delivered in autologous CD34+ hematopoietic progenitor cells. There were no OZ1-related adverse events. There was no statistically significant difference in viral load between the OZ1 and placebo group at the primary end point (average at weeks 47 and 48), but time-weighted areas under the curve from weeks 40-48 and 40-100 were significantly lower in the OZ1 group. Throughout the 100 weeks, CD4+ lymphocyte counts were higher in the OZ1 group. This study indicates that cell-delivered gene transfer is safe and biologically active in individuals with HIV and can be developed as a conventional therapeutic product.


Journal of Clinical Investigation | 1992

Increased susceptibility of differentiated mononuclear phagocytes to productive infection with human immunodeficiency virus-1 (HIV-1).

E A Rich; I S Chen; Jerome A. Zack; M L Leonard; W A O'Brien

Differences in susceptibility to infection of most mononuclear phagocytes with HIV-1 are not known. We investigated the relative susceptibility of autologous freshly isolated blood monocytes (MN), MN cultured in vitro to allow differentiation (CM), and alveolar macrophages (AM) from healthy subjects to productive infection with HIV-1. Cells were infected with the macrophage tropic strain HIV-1JR-FL and p24 gag antigen levels measured in supernatants by ELISA. Freshly isolated MN had negligible levels of p24 in supernatants. In contrast AM had peak p24 levels of 4145 +/- 1456 pg/ml, mean +/- SE, and CM 9216 +/- 3118. As a measure of entry and extent of reverse transcription, levels of viral DNA in infected mononuclear phagocytes were analyzed by quantitative polymerase chain reaction (PCR). The data using primers that amplify all transcripts including incompletely formed reverse transcripts indicated that differences in entry of the virus may contribute to differences in virus production observed with MN, AM, and CM. Other primer pairs that detect intermediate and full-length double-stranded DNA showed that the ability to complete reverse transcription was similar among these mononuclear phagocytes. Since the lung is a major site of opportunistic infection and noninfectious complications in HIV-1-infected individuals, this increase in productive infection with HIV-1 in AM compared with MN could contribute to the immunopathogenesis of the lung disorders seen in the acquired immunodeficiency syndrome.


Journal of Virology | 2002

Effects of Prostratin on T-Cell Activation and Human Immunodeficiency Virus Latency

Yael Korin; David G. Brooks; Stephen Brown; Andrew Korotzer; Jerome A. Zack

ABSTRACT Human immunodeficiency virus (HIV) replication is linked to cellular gene transcription and requires target cell activation. The latent reservoir of HIV-1 in quiescent T cells is thought to be a major obstacle to clearance of infection by highly active antiretroviral therapy (HAART). Thus, identification of agents that can induce expression of latent virus may, in the presence of HAART, allow elimination of the infected cells by the immune response. We previously used the SCID-hu (Thy/Liv) mouse model to establish that activation-inducible HIV can be generated at high frequency during thymopoiesis. Latently infected mature thymocytes can be exported into the periphery, providing an efficient primary cell model to determine cellular activation signals that induce renewed expression of latent virus. Here we characterized the effects of prostratin, a non-tumor-promoting phorbol ester, on primary human peripheral blood lymphocytes (PBLs) and assessed its ability to reactivate latent HIV infection from thymocytes and PBLs in the SCID-hu (Thy/Liv) model. Prostratin stimulation alone did not induce proliferation of quiescent PBLs; however, it could provide a secondary signal in the context of T-cell receptor stimulation or a primary activation signal in the presence of CD28 stimulation to induce T-cell proliferation. While prostratin alone was not sufficient to allow de novo HIV infection, it efficiently reactivated HIV expression from latently infected cells generated in the SCID-hu mouse. Our data indicate that prostratin alone is able to specifically reactivate latent virus in the absence of cellular proliferation, making it an attractive candidate for further study as an adjunctive therapy for the elimination of the latent HIV reservoir.


Immunity | 2003

Molecular Characterization, Reactivation, and Depletion of Latent HIV

David G. Brooks; Dean H. Hamer; Philip A. Arlen; Lianying Gao; Greg Bristol; Christina M. R. Kitchen; Edward A. Berger; Jerome A. Zack

Antiretroviral therapy is unable to eliminate HIV infection in a small, long-lived population of latently infected T cells, providing a source for renewed viral replication following cessation of therapy. Analysis of individual latently infected cells generated in the SCID-hu (Thy/Liv) mouse demonstrated no functional viral RNA produced in the latent state. Following reactivation viral expression was dramatically increased, rendering the infected cells susceptible to an anti-HIV immunotoxin. Treatment with the immunotoxin in conjunction with agents that activate virus expression without inducing cell division (IL-7 or the non-tumor-promoting phorbol ester prostratin) depleted the bulk of the latent reservoir and left uninfected cells able to respond to subsequent costimulation. We demonstrate that activation of latent virus is required for targeting by antiviral agents and provide the basis for future therapeutic strategies to eradicate the latent reservoir.


Nature Medicine | 2001

Generation of HIV latency during thymopoiesis.

David G. Brooks; Scott G. Kitchen; Christina M. R. Kitchen; Deirdre D. Scripture-Adams; Jerome A. Zack

The use of combination antiretroviral therapy results in a substantial reduction in viremia, a rebound of CD4+ T cells and increased survival for HIV-infected individuals. However, this treatment does not result in the total eradication of HIV. Rather, the virus is thought to remain latent in a subset of cells, where it avoids elimination by the immune system. In this state the virus is capable of reactivation of productive infection following cessation of therapy. These latently infected cells are very few in number and it has thus been difficult to determine their origin and to study the molecular nature of the latent viral genome. HIV replication is linked to cellular gene transcription and requires target cell activation. Therefore, should an activated, infected cell become transcriptionally inactive prior to cytopathic effects, the viral genome might be maintained in a latent state. We used the SCID-hu (Thy/Liv) mouse model to establish that activation-inducible HIV can be generated at high frequency during thymopoiesis, a process where previously activated cells mature towards quiescence. Moreover, we showed that these cells can be exported into the periphery where the virus remains latent until T-cell receptor stimulation, indicating that the thymus might be a source of latent HIV in humans.

Collaboration


Dive into the Jerome A. Zack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoran Galic

University of California

View shared research outputs
Top Co-Authors

Avatar

Steve W. Cole

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge