Jérôme Ausseil
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Ausseil.
Molecular Therapy | 2011
N. Matthew Ellinwood; Jérôme Ausseil; Nathalie Desmaris; Stéphanie Bigou; Song Liu; Jackie K. Jens; Elizabeth M. Snella; Eman Mohammed; Christopher B Thomson; Sylvie Raoul; Béatrice Joussemet; Françoise Roux; Yan Cherel; Yaouen Lajat; Monique Piraud; Rachid Benchaouir; Stephan Hermening; Harald Petry; Roseline Froissart; Marc Tardieu; Carine Ciron; Philippe Moullier; Jennifer Parkes; Karen L. Kline; Irène Maire; Marie-Thérèse Vanier; Jean-Michel Heard; Marie-Anne Colle
Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.
PLOS ONE | 2008
Jérôme Ausseil; Nathalie Desmaris; Stéphanie Bigou; Ruben Attali; Sébastien Corbineau; Sandrine Vitry; Mathieu Parent; David Cheillan; Maria Fuller; Irène Maire; Marie-Thérèse Vanier; Jean-Michel Heard
Background In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. Methodology/Principal Findings In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1α were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. Conclusions/Significance These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease.
Molecular and Cellular Neuroscience | 2009
Sandrine Vitry; Jérôme Ausseil; Michaël Hocquemiller; Stéphanie Bigou; Renata dos Santos Coura; Jean Michel Heard
The interruption of the lysosomal degradation of heparan sulfate oligosaccharides has deleterious consequences on the central nervous system in children or in animals with mucopolysaccharidosis type III (Sanfilippo syndrome). Behavioural manifestations are prominent at disease onset, suggesting possible early synaptic defects in cortical neurons. We report that synaptophysin, the most abundant protein of the synaptic vesicle membrane, was detected at low levels in the rostral cortex of MPSIII type B mice as early as 10 days after birth. This defect preceded other disease manifestations, was associated with normal neuron and synapse density and corrected after gene transfer inducing re-expression of the missing lysosomal enzyme. Clearance of heparan sulfate oligosaccharides in cultured embryonic MPSIIIB cortical neurons or treatment with proteasome inhibitors restored normal synaptophysin levels indicating that heparan sulfate oligosaccharides activate the degradation of synaptophysin by the proteasome with consequences on synaptic vesicle components that are relevant to clinical manifestations.
American Journal of Pathology | 2010
Sandrine Vitry; Julie Bruyère; Michaël Hocquemiller; Stéphanie Bigou; Jérôme Ausseil; Marie-Anne Colle; Marie-Christine Prévost; Jean Michel Heard
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
Journal of Neuroscience Research | 2010
Michaël Hocquemiller; Sandrine Vitry; Stéphanie Bigou; Julie Bruyère; Jérôme Ausseil; Jean Michel Heard
Behavioral manifestations mark the onset of disease expression in children with mucopolysaccharidosis type III (MPSIII, Sanfilippo syndrome), a genetic disorder resulting from interruption of the lysosomal degradation of heparan sulfate. In the mouse model of MPSIII type B (MPSIIIB), cortical neuron pathology and dysfunction occur several months before neuronal loss and are primarily cell autonomous. The gene coding for GAP43, a neurite growth potentiator, is overexpressed in the MPSIIIB mouse cortex, and neurite dystrophy was reported in other types of lysosomal storage diseases. We therefore examined the development of the neuritic trees in pure populations of MPSIIIB mouse embryo cortical neurons grown for up to 12 days in primary culture. Dynamic observation of living neurons and quantification of neurite growth parameters indicated more frequent neurite elongation and branching and less frequent neurite retraction, resulting in a relative overgrowth of MPSIIIB neuron neuritic trees, involving both dendrites and axons, compared with normal controls. Neurite overgrowth was concomitant with more than twofold increased expression of GAP43 mRNAs and proteins. Correction of the genetic defect leads to expression of the missing lysosomal enzyme, normal GAP43 mRNA expression, and reduced neurite outgrowth. These results indicate that heparan sulfate oligosaccharide storage modifies GAP43 expression in MPSIIIB cortical neurons with potential consequences for neurite development and neuronal functions that may be relevant to clinical manifestations.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Hugo A. Juraver-Geslin; Jérôme Ausseil; Marion Wassef; Béatrice Durand
Little is known about the respective contributions of cell proliferation and cell death to the control of vertebrate forebrain growth. The homeodomain protein barhl2 is expressed in the diencephalons of Xenopus, zebrafish, and mouse embryos, and we previously showed that Barhl2 overexpression in Xenopus neuroepithelial cells induces Caspase3-dependent apoptosis. Here, barhl2 is shown to act as a brake on diencephalic proliferation through an unconventional function of Caspase3. Depletion of Barhl2 or Caspase3 causes an increase in diencephalic cell number, a disruption of the neuroepithelium architecture, and an increase in Wnt activity. Surprisingly, these changes are not caused by decreased apoptosis but instead, are because of an increase in the amount and activation of β-catenin, which stimulates excessive neuroepithelial cell proliferation and induces defects in β-catenin intracellular localization and an up-regulation of axin2 and cyclinD1, two downstream targets of β-catenin/T-cell factor/lymphoïd enhancer factor signaling. Using two different sets of complementation experiments, we showed that, in the developing diencephalon, Caspase3 acts downstream of Barhl2 in limiting neuroepithelial cell proliferation by inhibiting β-catenin activation. Our data argue that Bar homeodomain proteins share a conserved function as cell type-specific regulators of Caspase3 activities.
Human Molecular Genetics | 2012
Elise Roy; Julie Bruyère; Patricia Flamant; Stéphanie Bigou; Jérôme Ausseil; Sandrine Vitry; Jean Michel Heard
Cell pathology in lysosomal storage diseases is characterized by the formation of distended vacuoles with characteristics of lysosomes. Our previous studies in mucopolysaccharidosis type IIIB (MPSIIIB), a disease in which a genetic defect induces the accumulation of undigested heparan sulfate (HS) fragments, led to the hypothesis that abnormal lysosome formation was related to events occurring at the Golgi level. We reproduced the enzyme defect of MPSIIIB in HeLa cells using tetracycline-inducible expression of shRNAs directed against α-N-acetylglucosaminidase (NAGLU) and addressed this hypothesis. HeLa cells deprived of NAGLU accumulated abnormal lysosomes. The Golgi matrix protein GM130 was over-expressed. The cis- and medial-Golgi compartments were distended, elongated and formed circularized ribbons. The Golgi microtubule network was enlarged with increased amounts of AKAP450, a partner of GM130 controlling this network. GM130 down-regulation prevented pathology in HeLa cells deprived of NAGLU, whereas GM130 over-expression in control HeLa cells mimicked the pathology of deprived cells. We concluded that abnormal lysosomes forming in cells accumulating HS fragments were the consequence of GM130 gain-of-function and subsequent alterations of the Golgi ribbon architecture. These results indicate that GM130 functions are modulated by HS glycosaminoglycans and therefore possibly controlled by extracellular cues.
Biochemical Society Transactions | 2010
Jean Michel Heard; Julie Bruyère; Elise Roy; Stéphanie Bigou; Jérôme Ausseil; Sandrine Vitry
Biochemical disorders in lysosomal storage diseases consist of the interruption of metabolic pathways involved in the recycling of the degradation products of one or several types of macromolecules. The progressive accumulation of these primary storage products is the direct consequence of the genetic defect and represents the initial pathogenic event. Downstream consequences for the affected cells include the accumulation of secondary storage products and the formation of histological storage lesions, which appear as intracellular vacuoles that represent the pathological hallmark of lysosomal storage diseases. Relationships between storage products and storage lesions are not simple and are still largely not understood. Primary storage products induce malfunction of the organelles where they accumulate, these being primarily, but not only, lysosomes. Consequences for cell metabolism and intracellular trafficking combine the effects of primary storage product toxicity and the compensatory mechanisms activated to protect the cell. Induced disorders extend far beyond the primarily interrupted metabolic pathway.
Molecular Genetics and Metabolism | 2008
David Cheillan; Céline Malleval; Jérôme Ausseil; Sandrine Vitry; Jean-Michel Heard; Irène Maire; Jérôme Honnorat; Marie-Françoise Belin; Monique Touret
Mucopolysaccharidosis IIIB is a lysosomal disease characterized by a severe neurological deterioration, the pathophysiological mechanisms of which are poorly understood. Recently FGF pathway was shown to be altered leading us to explore a downstream target involved in brain development: the collapsin response mediator protein-1 (CRMP-1). CRMP-1 transcript level was normal but a cleavage of CRMP-1 was observed with an abnormal expression of the truncated form until adult age. This truncated CRMP-1 protein could play a role in post-natal cortex maturation and be involved in neuronal alterations occurring in lysosomal diseases.
Mechanisms of Development | 2009
Béatrice Durand; Jérôme Ausseil; Dimeng Shi; Marion Wassef
Little is known about the respective contributions of cell proliferation and cell death to the control of vertebrate forebrain growth. The homeodomain containing gene barhl2 is expressed in the diencephalon of Xenopus, zebrafish, and mouse embryos, and we previously showed that its over-expression in Xenopus neuroepithelial cells induces Caspase3-dependent apoptosis. These findings suggested that Barhl2 and Caspase3 might be involved in diencephalic growth and morphogenesis. Consistent with this suggestion, we have demonstrated that depletion of either protein causes an increase in diencephalic cell proliferation, disturbance in interkinetic nuclear migration and altered differentiation of the prosomere P2 alar plate. Surprisingly, however, these changes are not caused by decreased apoptosis but instead are caused by an increase in the level and activation of b-catenin, which stimulates excessive neuroepithelial cell proliferation. Thus Caspase3 and Barhl2 normally inhibit neuroepithelial cell proliferation in the developing diencephalon by inhibiting b-catenin activation and our data reveal critical cross-talk between Caspase3 and b-catenin—two major regulators of cell proliferation and apoptosis, respectively.