Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome B. Rattner is active.

Publication


Featured researches published by Jerome B. Rattner.


Journal of Cell Biology | 2006

Coupling of the nucleus and cytoplasm: Role of the LINC complex

Melissa Crisp; Qian Liu; Kyle J. Roux; Jerome B. Rattner; Catherine M. Shanahan; Brian Burke; Phillip D. Stahl; Didier Hodzic

The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH2-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419–3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex).


Cell | 2002

Cytoplasmic Dynein as a Facilitator of Nuclear Envelope Breakdown

Davide Salina; Khaldon Bodoor; D. Mark Eckley; Trina A. Schroer; Jerome B. Rattner; Brian Burke

During prophase in higher cells, centrosomes localize to deep invaginations in the nuclear envelope in a microtubule-dependent process. Loss of nuclear membranes in prometaphase commences in regions of the nuclear envelope that lie outside of these invaginations. Dynein and dynactin complex components concentrate on the nuclear envelope prior to any changes in nuclear envelope organization. These observations suggest a model in which dynein facilitates nuclear envelope breakdown by pulling nuclear membranes and associated proteins poleward along astral microtubules leading to nuclear membrane detachment. Support for this model is provided by the finding that interference with dynein function drastically alters nuclear membrane dynamics in prophase and prometaphase.


Journal of Cell Biology | 2006

Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells

Song-Tao Liu; Jerome B. Rattner; Sandra A. Jablonski; Tim J. Yen

We report the interactions amongst 20 proteins that specify their assembly to the centromere–kinetochore complex in human cells. Centromere protein (CENP)-A is at the top of a hierarchy that directs three major pathways, which are specified by CENP-C, -I, and Aurora B. Each pathway consists of branches that intersect to form nodes that may coordinate the assembly process. Complementary EM studies found that the formation of kinetochore trilaminar plates depends on the CENP-I/NUF2 branch, whereas CENP-C and Aurora B affect the size, shape, and structural integrity of the plates. We found that hMis12 is not constitutively localized at kinetochores, and that it is not essential for recruiting CENP-I. Our studies also revealed that kinetochores in HeLa cells contain an excess of CENP-A, of which ∼10% is sufficient to promote the assembly of normal levels of kinetochore proteins. We elaborate on a previous model that suggested kinetochores are assembled from repetitive modules (Zinkowski, R.P., J. Meyne, and B.R. Brinkley. 1991. J. Cell Biol. 113:1091–110).


Cell | 1985

Radial loops and helical coils coexist in metaphase chromosomes

Jerome B. Rattner; C.C. Lin

Histone-depleted chromosomes have revealed a scaffold and loop architecture of metaphase chromosomes. In its simplest form this arrangement contradicts many classical observations suggesting chromosomes have a helical substructure. We have obtained preparations that allow the visualization of several levels of chromosome structure. These images suggest that metaphase packing is achieved by the compaction through helical coiling of a 200-300 nm fiber that is in turn composed of radial loops. These observations imply that any scaffold elements associated with radial loops are not distributed as previously proposed but must follow a complex and more extensive path within the metaphase chromatid.


Journal of Cell Biology | 2003

Nup358 integrates nuclear envelope breakdown with kinetochore assembly

Davide Salina; Paul Enarson; Jerome B. Rattner; Brian Burke

Nuclear envelope breakdown (NEBD) and release of condensed chromosomes into the cytoplasm are key events in the early stages of mitosis in metazoans. NEBD involves the disassembly of all major structural elements of the nuclear envelope, including nuclear pore complexes (NPCs), and the dispersal of nuclear membrane components. The breakdown process is facilitated by microtubules of the mitotic spindle. After NEBD, engagement of spindle microtubules with chromosome-associated kinetochores leads to chromatid segregation. Several NPC subunits relocate to kinetochores after NEBD. siRNA-mediated depletion of one of these proteins, Nup358, reveals that it is essential for kinetochore function. In the absence of Nup358, chromosome congression and segregation are severely perturbed. At the same time, the assembly of other kinetochore components is strongly inhibited, leading to aberrant kinetochore structure. The implication is that Nup358 plays an essential role in integrating NEBD with kinetochore maturation and function. Mitotic arrest associated with Nup358 depletion further suggests that mitotic checkpoint complexes may remain active at nonkinetochore sites.


Journal of Cell Science | 2005

MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis

Jun Chul Kim; Young Y. Ou; Jose L. Badano; Muneer A. Esmail; Carmen C. Leitch; Elsa Fiedrich; Philip L. Beales; John M. Archibald; Nicholas Katsanis; Jerome B. Rattner; Michel R. Leroux

Chaperonins are multisubunit, cylinder-shaped molecular chaperones involved in folding newly synthesized polypeptides. Here we show that MKKS/BBS6, one of several proteins associated with Bardet-Biedl syndrome (BBS), is a Group II chaperonin-like protein that has evolved recently in animals from a subunit of the eukaryotic chaperonin CCT/TRiC, and diverged rapidly to acquire distinct functions. Unlike other chaperonins, cytosolic BBS6 does not oligomerize, and the majority of BBS6 resides within the pericentriolar material (PCM), a proteinaceous tube surrounding centrioles. During interphase, BBS6 is confined to the lateral surfaces of the PCM but during mitosis it relocalizes throughout the PCM and is found at the intercellular bridge. Its predicted substrate-binding apical domain is sufficient for centrosomal association, and several patient-derived mutations in this domain cause mislocalization of BBS6. Consistent with an important centrosomal function, silencing of the BBS6 transcript by RNA interference in different cell types leads to multinucleate and multicentrosomal cells with cytokinesis defects. The restricted tissue distribution of BBS6 further suggests that it may play important roles in ciliated epithelial tissues, which is consistent with the probable functions of BBS proteins in basal bodies (modified centrioles) and cilia. Our findings provide the first insight into the nature and cellular function of BBS6, and shed light on the potential causes of several ailments, including obesity, retinal degeneration, kidney dysfunction and congenital heart disease.


Journal of Anatomy | 2000

The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture

Marie-Pierre Hellio Le Graverand; Yongchung Ou; Teresa Schield-Yee; Leona Barclay; David A. Hart; Takashi Natsume; Jerome B. Rattner

Four major morphologically distinct classes of cells were identified within the adult rabbit meniscus using antibodies to cytoskeletal proteins. Two classes of cell were present in the fibrocartilage region of the meniscus. These meniscal cells exhibited long cellular processes that extended from the cell body. A third cell type found in the inner hyaline‐like region of the meniscus had a rounded form and lacked projections. A fourth cell type with a fusiform shape and no cytoplasmic projections was found along the superficial regions of the meniscus. Using a monoclonal antibody to connexin 43, numerous gap junctions were observed in the fibrocartilage region, whereas none were seen in cells either from the hyaline‐like or the superficial zones of the meniscus. The majority of the cells within the meniscus exhibited other specific features such as primary cilia and 2 centrosomes. The placement of the meniscal cell subtypes as well as their morphology and architecture support the supposition that their specific characteristics underlie the ability of the meniscus to respond to different types of environmental mechanical loads.


Journal of Anatomy | 2002

Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc

Sabina B. Bruehlmann; Jerome B. Rattner; John R. Matyas; Neil A. Duncan

The three‐dimensional architecture of cells in the annulus fibrosus was studied by a systematic, histological examination using antibodies to cytoskeletal components, in conjunction with confocal microscopy. Variations in cell shape, arrangement of cellular processes and cytoskeletal architecture were found both within and between the defined zones of the outer and inner annulus. The morphology of three, novel annulus fibrosus cells is described: extended cordlike cells that form an interconnected network at the periphery of the disc; cells with extensive, sinuous processes in the inner region of the annulus fibrosus; and cells with broad, branching processes specific to the interlamellar septae of the outer annulus. The complex, yet seemingly deliberate arrangement of various cell shapes and their processes suggests multiple functional roles. Regional variations in the organization of the actin and vimentin cytoskeletal networks is reported across all regions of the annulus. Most notable is the continuous, strand arrangement of the actin label at the discs periphery in contrast to its punctate appearance in all other regions. The gap junction protein connexin 43 was found within cells from all regions of the annulus, including those which did not form physical connections with surrounding cells. These observations of the cellular matrix in the healthy intervertebral disc should contribute to a better understanding of site‐specific changes in tissue architecture, biochemistry and mechanical properties during degeneration, injury and healing.


Journal of Cell Biology | 2007

Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments

Haomin Huang; Jakub K. Famulski; Jerome B. Rattner; Song Tao Liu; Gary D. Kao; Ruth J. Muschel; Gordon K. Chan; Tim J. Yen

hSgo2 (previously annotated as Tripin) was recently reported to be a new inner centromere protein that is essential for centromere cohesion (Kitajima et al., 2006). In this study, we show that hSgo2 exhibits a dynamic distribution pattern, and that its localization depends on the BUB1 and Aurora B kinases. hSgo2 is concentrated at the inner centromere of unattached kinetochores, but extends toward the kinetochores that are under tension. This localization pattern is reminiscent of MCAK, which is a microtubule depolymerase that is believed to be a key component of the error correction mechanism at kinetochores. Indeed, we found that hSgo2 is essential for MCAK to localize to the centromere. Delocalization of MCAK accounts for why cells depleted of hSgo2 exhibit kinetochore attachment defects that go uncorrected, despite a transient delay in the onset of anaphase. Consequently, these cells exhibit a high frequency of lagging chromosomes when they enter anaphase. We confirmed that hSgo2 is associated with PP2A, and we propose that it contributes to the spatial regulation of MCAK activity within inner centromere and kinetochore.


Experimental Cell Research | 2009

Adenylate cyclase regulates elongation of mammalian primary cilia

Young Ou; Yibing Ruan; Min Cheng; Joanna J. Moser; Jerome B. Rattner; Frans A. van der Hoorn

The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3beta by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

Collaboration


Dive into the Jerome B. Rattner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Ou

University of Calgary

View shared research outputs
Top Co-Authors

Avatar

Tim J. Yen

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge