Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome C. Regier is active.

Publication


Featured researches published by Jerome C. Regier.


Nature | 2010

Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences

Jerome C. Regier; Jeffrey W. Shultz; Andreas Zwick; April Hussey; Bernard Ball; Regina Wetzer; Joel W. Martin; Clifford W. Cunningham

The remarkable antiquity, diversity and ecological significance of arthropods have inspired numerous attempts to resolve their deep phylogenetic history, but the results of two decades of intensive molecular phylogenetics have been mixed. The discovery that terrestrial insects (Hexapoda) are more closely related to aquatic Crustacea than to the terrestrial centipedes and millipedes (Myriapoda) was an early, if exceptional, success. More typically, analyses based on limited samples of taxa and genes have generated results that are inconsistent, weakly supported and highly sensitive to analytical conditions. Here we present strongly supported results from likelihood, Bayesian and parsimony analyses of over 41 kilobases of aligned DNA sequence from 62 single-copy nuclear protein-coding genes from 75 arthropod species. These species represent every major arthropod lineage, plus five species of tardigrades and onychophorans as outgroups. Our results strongly support Pancrustacea (Hexapoda plus Crustacea) but also strongly favour the traditional morphology-based Mandibulata (Myriapoda plus Pancrustacea) over the molecule-based Paradoxopoda (Myriapoda plus Chelicerata). In addition to Hexapoda, Pancrustacea includes three major extant lineages of ‘crustaceans’, each spanning a significant range of morphological disparity. These are Oligostraca (ostracods, mystacocarids, branchiurans and pentastomids), Vericrustacea (malacostracans, thecostracans, copepods and branchiopods) and Xenocarida (cephalocarids and remipedes). Finally, within Pancrustacea we identify Xenocarida as the long-sought sister group to the Hexapoda, a result confirming that ‘crustaceans’ are not monophyletic. These results provide a statistically well-supported phylogenetic framework for the largest animal phylum and represent a step towards ending the often-heated, century-long debate on arthropod relationships.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

Pancrustacean phylogeny : hexapods are terrestrial crustaceans and maxillopods are not monophyletic

Jerome C. Regier; Jeffrey W. Shultz; Robert E. Kambic

Recent molecular analyses indicate that crustaceans and hexapods form a clade (Pancrustacea or Tetraconata), but relationships among its constituent lineages, including monophyly of crustaceans, are controversial. Our phylogenetic analysis of three protein–coding nuclear genes from 62 arthropods and lobopods (Onychophora and Tardigrada) demonstrates that Hexapoda is most closely related to the crustaceans Branchiopoda (fairy shrimp, water fleas, etc.) and Cephalocarida + Remipedia, thereby making hexapods terrestrial crustaceans and the traditionally defined Crustacea paraphyletic. Additional findings are that Malacostraca (crabs, isopods, etc.) unites with Cirripedia (barnacles, etc.) and they, in turn, with Copepoda, making the traditional crustacean class Maxillopoda paraphyletic. Ostracoda (seed shrimp)—either all or a subgroup—is associated with Branchiura (fish lice) and likely to be basal to all other pancrustaceans. A Bayesian statistical (non–clock) estimate of divergence times suggests a Precambrian origin for Pancrustacea (600 Myr ago or more), which precedes the first unambiguous arthropod fossils by over 60 Myr.


PLOS ONE | 2013

A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies)

Jerome C. Regier; Charles Mitter; Andreas Zwick; Adam L. Bazinet; Michael P. Cummings; Akito Y. Kawahara; Jae-Cheon Sohn; Derrick J. Zwickl; Soowon Cho; Donald R. Davis; Joaquin Baixeras; John W. Brown; Cynthia Sims Parr; Susan J. Weller; David C. Lees; Kim T. Mitter

Background Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. Methodology / Principal Findings 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. Conclusions / Significance Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when analysis is restricted to nonsynonymous change, while total change is necessary for strong support of others. Thus, multiple types of analyses will be necessary to fully resolve lepidopteran phylogeny.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2000

Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean+hexapod clade.

Je¡rey W. Shultz; Jerome C. Regier

Recent phylogenetic analyses using molecular data suggest that hexapods are more closely related to crustaceans than to myriapods, a result that conflicts with long–held morphology–based hypotheses. Here we contribute additional information to this debate by conducting phylogenetic analyses on two nuclear protein–encoding genes, elongation factor–1α (EF–1α) and the largest subunit of RNA polymerase II (Pol II), from an extensive sample of arthropod taxa. Results were obtained from two data sets. One data set comprised 1092 nucleotides (364 amino acids) of EF–1α and 372 nucleotides (124 amino acids) of Pol II from 30 arthropods and three lobopods. The other data set contained the same EF––lα fragment and an expanded 1038–nucleotide (346–amino–acid) sample of Pol II from 17 arthropod taxa. Results from maximum–parsimony and maximum–likelihood analyses strongly supported the existence of a Crustacea+ Hexapoda clade (Pancrustacea) over a Myriapoda + Hexapoda clade (Atelocerata). The apparent incompatibility between the molecule–based Pancrustacea hypothesis and morphology–based Atelocerata hypothesis is discussed.


Systematic Entomology | 2005

Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein‐coding nuclear genes

Andrew Mitchell; Charles Mitter; Jerome C. Regier

Abstract.  A broad molecular systematic survey of Noctuidae was undertaken to test recent hypotheses on the problematic definitions and relationships of the subfamilies, with special emphasis on the ‘trifines.’ An initial hypothesis of noctuid classification to the subtribal level was synthesized from recent reviews, and then sampled as broadly as possible. Concatenated sequences for the nuclear genes elongation factor‐1α (EF‐1α; 1200 bp) and dopa decarboxylase (DDC; 700–1100 bp) were analysed for a total of 146 exemplar species, twice that of a previous study. Trees were estimated using likelihood, distance, and both equally weighted and ‘six‐parameter’ parsimony. Of the 144 possible nodes, bootstrap support (BP) was ≥ 50% for ∼80, and ≥ 80% for ∼60. There was very strong support (BP ≥ 90%) for an ‘L.A.Q.’ clade encompassing nearly all quadrifine noctuids plus Arctiidae and Lymantriidae, decisively rendering Noctuidae paraphyletic. We present a new classification for Noctuoidea in which Noctuidae sensu stricto is restricted to trifines; most quadrifine subfamilies are raised to full families. Within the ‘L.A.Q.’ clade, Aganainae and Herminiinae were strongly grouped, but other relationships were weakly supported, probably due to limited taxon sampling. Nolidae and Euteliinae + Stictopterinae are generally grouped with the ‘L.A.Q.’ clade, but with weak support. All analyses favour the broadest definitions proposed for the trifine clade (our Noctuidae sensu stricto) although support is not strong, except that the exemplar of Eustrotiinae: Eublemmini is placed securely in the ‘L.A.Q.’ clade. Numerous recent proposals for dismantling and recombining the ‘Hampsonian’ traditional trifine subfamilies are strongly supported, most notably a broadly defined ‘true cutworm’ clade (Noctuinae s.l.), encompassing the greater part of the traditional subfamilies Amphipyrinae, Cuculliinae, Hadeninae and Noctuinae s.s. (BP ≥ 95%). Within this clade there is strong support for Apameini s.s.+ Xylenini s.l. and for Noctuinae s.s. and divisions thereof, but little support for monophyly or subdivision of Hadeninae. Noctuinae s.l. invariably are allied with Heliothinae, scattered remnants of the traditional Amphipyrinae, and several smaller groups in a broader ‘pest clade’, albeit with weak support. Relationships among the remaining ‘lower’ trifines are not strongly resolved. Mapping of a preliminary synopsis of species diversities, host use patterns and latitudinal distributions on the phylogeny suggests that the diversification of trifines may have been promoted, to a degree unique among Macrolepidoptera, by the Tertiary expansion of seasonal, open habitats and their associated herbaceous floras.


Systematic Entomology | 2008

A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny

Jerome C. Regier; Christopher P. Cook; Charles Mitter; April Hussey

Abstract This study had two aims. First, we tested the monophyly of and relationships within the ‘bombycoid complex’, an assembly of approximately 5300 species postulated by Minet to represent 12 families in three superfamilies, by sequencing five protein‐coding nuclear gene regions (CAD, DDC, enolase, period, wingless; approximately 6750 bp total) in 66 representatives of most of the subfamilies and tribes. Second, we sought initial evidence on the utility of these genes for estimating relationships among Macrolepidoptera more broadly (11 superfamilies total), by adding representatives of eight families from four other superfamilies, and by assessing the phylogenetic information content of the individual genes and partitions thereof. Analysis of the combined data by likelihood and parsimony upholds monophyly for the bombycoid complex and for Bombycoidea sensu stricto (includes Anthelidae, see below), but with weak bootstrap support. Minet’s assignment of Phiditiinae to Bombycoidea rather than to Noctuoidea is strongly upheld, but Anthelidae, placed in Lasiocampoidea by Minet, group securely within Bombycoidea sensu stricto. Within the latter, the basal split segregates a strongly supported ‘BALE’ group [Apatelodinae + (Eupterotidae + (Brahmaeidae + Lemoniidae))]. The remaining families form a consistently but weakly supported clade, within which the basal split segregates the very strongly supported ‘CAPOPEM’ group [Carthaeidae, Anthelidae, Phiditiinae, (Prismostictini + (Endromidae + (Oberthueriini + Mirinidae)))]. The remaining bombycoids are grouped, very weakly, as Sphingidae + (Bombycinae + Saturniidae). All multiply‐sampled families are strongly recovered, in both outgroups and ingroups, except that Bombycidae sensu Minet are rendered decisively polyphyletic. All genes make important contributions to the combined data results, and there is little strong conflict among genes or between synonymous and nonsynonymous change, although two instances of inter‐gene conflict were notable, one in Lasiocampidae and one in Mimallonidae. Overall, about 75% of nodes are strongly supported (i.e. bootstrap value ≥80%). Superfamilies are recovered, but not always strongly, whereas relationships among superfamilies are recovered only weakly and inconsistently; even within the reasonably well‐sampled Bombycoidea sensu stricto, a (to us) surprising number of interfamily relationships remain uncertain. Thus, it seems clear that substantially more genes, plus additional taxon sampling in most superfamilies, will be required to resolve macrolepidopteran phylogeny.


Systematic Biology | 2011

Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)?

Soowon Cho; Andreas Zwick; Jerome C. Regier; Charles Mitter; Michael P. Cummings; Jianxiu Yao; Zaile Du; Hong Zhao; Akito Y. Kawahara; Susan J. Weller; Donald R. Davis; Joaquin Baixeras; John W. Brown; Cynthia Sims Parr

Abstract This paper addresses the question of whether one can economically improve the robustness of a molecular phylogeny estimate by increasing gene sampling in only a subset of taxa, without having the analysis invalidated by artifacts arising from large blocks of missing data. Our case study stems from an ongoing effort to resolve poorly understood deeper relationships in the large clade Ditrysia ( > 150,000 species) of the insect order Lepidoptera (butterflies and moths). Seeking to remedy the overall weak support for deeper divergences in an initial study based on five nuclear genes (6.6 kb) in 123 exemplars, we nearly tripled the total gene sample (to 26 genes, 18.4 kb) but only in a third (41) of the taxa. The resulting partially augmented data matrix (45% intentionally missing data) consistently increased bootstrap support for groupings previously identified in the five-gene (nearly) complete matrix, while introducing no contradictory groupings of the kind that missing data have been predicted to produce. Our results add to growing evidence that data sets differing substantially in gene and taxon sampling can often be safely and profitably combined. The strongest overall support for nodes above the family level came from including all nucleotide changes, while partitioning sites into sets undergoing mostly nonsynonymous versus mostly synonymous change. In contrast, support for the deepest node for which any persuasive molecular evidence has yet emerged (78–85% bootstrap) was weak or nonexistent unless synonymous change was entirely excluded, a result plausibly attributed to compositional heterogeneity. This node (Gelechioidea + Apoditrysia), tentatively proposed by previous authors on the basis of four morphological synapomorphies, is the first major subset of ditrysian superfamilies to receive strong statistical support in any phylogenetic study. A “more-genes-only” data set (41 taxa×26 genes) also gave strong signal for a second deep grouping (Macrolepidoptera) that was obscured, but not strongly contradicted, in more taxon-rich analyses.


Systematic Entomology | 2008

Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status

Soowon Cho; Andrew Mitchell; Charles Mitter; Jerome C. Regier; Marcus Matthews; Ron Robertson

Abstract The Heliothinae are a cosmopolitan subfamily of about 365 species that include some of the world’s most injurious crop pests. This study re‐assesses evolutionary relationships within heliothines, providing an improved phylogeny and classification to support ongoing intensive research on heliothine genomics, systematics, and biology. Our phylogeny estimate is based on two nuclear gene regions, namely elongation factor‐1α (EF‐1α; 1240 bp) and dopa decarboxylase (DDC; 687 bp), and on the barcoding region of mitochondrial cytochrome oxidase I (COI; 708 bp), providing a total of 2635 bp. These were sequenced for 71 heliothines, representing all major genera and nearly all recognized subgenera and species groups, and for 16 outgroups representing all major lineages of trifine Noctuidae. Analysis of the combined data by maximum likelihood, unweighted parsimony and Bayesian methods gave nearly identical topologies, and the individual gene trees showed only one case of potentially strong conflict. Relationships among genera and subgenera are resolved with strong bootstrap support. The earliest‐diverging lineages (c. 200 species in total) consist almost entirely of host specialists, reflecting the inferred ancestral heliothine host range under parsimony. The remaining species form a clade – the Heliothis group – that includes most of the polyphages (30% of heliothines) and all of the major pests. Many other species in the Heliothis group, however, are host specialists. Our results extend previous efforts to subdivide this large clade, and show the most notorious pest groups, the corn earworm complex (Helicoverpa) and the tobacco budworm (Heliothis virescens) group, to be closely related, joining with a small oligophagous genus in what we term the major‐pest lineage. Thus, genomic/experimental results from one model pest may extrapolate well to other pest species. The frequency of evolutionary expansion and contraction in host range appears to increase dramatically at the base of the Heliothis group, in contrast to the case for earlier‐diverging lineages. We ascribe this difference provisionally to differential evolutionary constraints arising from contrasting life‐history syndromes. Host‐specific behaviour and crypsis, coupled with low fecundity and vagility, may discourage host‐range expansion in earlier‐diverging lineages. By contrast, in the Heliothis group, the absence of host‐specific traits, coupled with high vagility and fecundity, may more readily permit expansion or contraction of the host range in response to varying ecological pressures such as host species abundance or differential competition and predation.


PLOS ONE | 2009

Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes

Akito Y. Kawahara; Andre A. Mignault; Jerome C. Regier; Ian J. Kitching; Charles Mitter

Background The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations. Conclusions/Significance Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths is more phylogenetically conserved than previously postulated.


Systematic Entomology | 2011

Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera)

Andreas Zwick; Jerome C. Regier; Charles Mitter; Michael P. Cummings

This study has as its primary aim the robust resolution of higher‐level relationships within the lepidopteran superfamily Bombycoidea. Our study builds on an earlier analysis of five genes (∼6.6 kbp) sequenced for 50 taxa from Bombycoidea and its sister group Lasiocampidae, plus representatives of other macrolepidoteran superfamilies. The earlier study failed to yield strong support for the monophyly of and basal splits within Bombycoidea, among others. Therefore, in an effort to increase support specifically for higher‐level nodes, we generated 11.7 kbp of additional data from 20 genes for 24 of 50 bombycoid and lasiocampid taxa. The data from the genes are all derived from protein‐coding nuclear genes previously used to resolve other lepidopteran relationships. With these additional data, all but a few higher‐level nodes are strongly supported. Given our decision to minimize project costs by augmenting genes for only 24 of the 50 taxa, we explored whether the resulting pattern of missing data in the combined‐gene matrix introduced a nonphylogenetic bias, a possibility reported by others. This was achieved by comparing node support values (i.e. nonparametric bootstrap values) based on likelihood and parsimony analyses of three datasets that differ in their number of taxa and level of missing data: 50 taxa/5 genes (dataset A), 50 taxa/25 genes (dataset B) and 24 taxa/25 genes (dataset C). Whereas datasets B and C provided similar results for common nodes, both frequently yielded higher node support relative to dataset A, arguing that: (i) more data yield increased node support and (ii) partial gene augmentation does not introduce an obvious nonphylogenetic bias. A comparison of single‐gene bootstrap analyses identified four nodes for which one or two of the 25 genes provided modest to strong support for a grouping not recovered by the combined‐gene result. As a summary proposal, two of these four groupings (one each within Bombycoidea and Lasiocampidae) were deemed sufficiently problematic to regard them as unresolved trichotomies. Since the alternative groupings were always highly localized on the tree, we did not judge a combined‐gene analysis to present a problem outside those regions. Based on our robustly resolved results, we have revised the classification of Bombycoidea: the family Bombycidae is restricted to its nominate subfamily, and its tribe Epiini is elevated to subfamily rank (Epiinae stat.rev.), whereas the bombycid subfamily Phiditiinae is reinstated as a separate family (Phiditiidae stat.rev.). The bombycid subfamilies Oberthueriinae Kuznetzov & Stekolnikov, 1985, syn.nov. and Prismostictinae Forbes, 1955, syn.nov., and the family Mirinidae Kozlov, 1985, syn.nov. are established as subjective junior synonyms of Endromidae Boisduval, 1828. The family Anthelidae (Lasiocampoidea) is reincluded in the superfamily Bombycoidea.

Collaboration


Dive into the Jerome C. Regier's collaboration.

Top Co-Authors

Avatar

Andreas Zwick

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Friedlander

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Akito Y. Kawahara

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Soowon Cho

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Donald R. Davis

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Richard S. Peigler

University of the Incarnate Word

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Brown

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jae-Cheon Sohn

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge